pow=a rasisione

GOMPONENT SELECTOR 4000G

Military Qualified Resistors	
MIL Spec	Ohmite Series
DWG 89040	RW (SMD)
DWG 99001	OX/OY
MIL-R-22	RP Rheostats
MIL-R-26	MIL-R-26
RW20V	250 Series*
RW21V	250 Series*
RW22V	250 Series*
RW23V	250 Series*
RW24V	250 Series*
RW29V/N	270 Series*
RW30V	270 Series*
RW31V/N	270 Series*
RW32V	270 Series*
RW33V/N	270 Series*
RW36V	270 Series*
RW37V/N	270 Series*
RW38V/N	270 Series*
RW39V	270 Series*
RW47V/N	270 Series*
RW67V	80 Series*
RW68V	80 Series*
RW69V	80 Series*
RW70U	80 Series*
RW74U	80 Series*
RW78U	80 Series*
RW79U	80 Series*
MIL-R-29	290E,291E,292E
MIL-R-6749	AN3155 Rheostat
MIL-R-19365	210 Series*
RX29	210 Series*
RX32	210 Series*
RX33	210 Series*
RX35	210 Series*
RX36	210 Series*
RX37	210 Series*
RX38	210 Series*
RX47	210 Series*

*Must be ordered
under MIL specification part number

Wherever resistors, rheostats, and other passive components appear in military equipment, almost always will you find the familiar Ohmite name, a recognized mark of quality.

Ohmite products designed to meet military specifications are tested on the same type of equipment used by the government for qualification approval tests. In fact, the Ohmite laboratory and its testing facility have been approved for official qualification testing purposes.

Table of Contents

Ohmite History and Policies	2
Surface Mount	
HVF Series - High Voltage Film Flip Chip	3
LVC Series - Low Value Thick Film Chip	4
LVK Series - Four Terminal High Precision Current Sense	4a
FCSL Series - Metal Foil Current Sense	4b
Mini Macro Chip Series - High Voltage Thick Film Chip	5
Macrochip Series - High Voltage Thick Film	6
60 Series - Surface Mount Metal Plate Current Sense	7-8
MC1RD Series - SMT-MOX Divider	8
RC Series - Carbon Composition (0.25 and 0.5 Watt)	9-11
RC Series - Ceramic Composition (0.5 Watt and above)	9-11
RF Series - Metal Film	9-11
RP Series - Power Film	9-11
RW Series - Wirewound Power and Low Value	9-11
2010 SMD - 0.6 Watt Wirewound	12
RW1/RW2 Series - Surface Mount Four Terminal Current Sense	13
TDH Series - 35 Watt TO220 Package Heat Sinkable Thick Film	58
Wirewound Power: Industrial and Military Grade	
WL Series - Miniature Wirewound Current Sense	14
WH/WN Series - Miniature Molded Wirewound	15
CS3 Series - Wire Element Four Terminal Current Sense	16
10 Series -Two Terminal Axial Wire Element Current Sense	17
10 Series - Four Terminal Axial Current Sense	17
60 Series - Two Terminal Metal Element Current Sense	18
60 Series - Four Terminal Bare Element	19
20 Series - Vitreous Enamel Conformal Axial Terminal	20
40 Series - Ohmicone ${ }^{\circledR}$ Silicone Ceramic Conformal Axial Terminal	21
80 Series - Acrasil ${ }^{\text {® }}$ Silicone Ceramic Conformal Axial Terminal	22
RW Series - Military Grade 80 Series	22
89 Series - Metal-Mite ${ }^{\circledR}$ Aluminum Housed Heat Sinkable	23
90 Series - Molded Vitreous Enamel Axial Terminal	25
90 Series - Mounting Clip	25
Axiohm Series - Centohm Coated Axial Terminal	25
G Series - Capacitor Discharge and Symmetry	26
HS/HSN Series - Aluminum Housed Axial terminal Heat Sinkable	27
Metalohm - Cold Rolled Steel Encased Radial Terminal Heat Sinkable	28
PC-58 Series - Tubular Radial Terminal	29
WFH Series - Aluminum Housed Wirewound Power	30
Wirewound "Lug"	
200 Series - Brown Devil ${ }^{\text {® }}$ Tubular Vitreous	31
210 Series - Dividohm ${ }^{\circledR}$ Tubular Vitreous Adjustable	32
250 Series - Stackohm ${ }^{\circledR}$ Oval Core Vitreous	33
270 Series - Tubular Fixed Vitreous	34
280 Series - Corrib ${ }^{\circledR}$ Tubular High Current, Fixed and Adjustable Vitreous	35
Mounting Hardware	36
Terminals for Tubular Cores	37-38
Wirewound Precision	
HPW Series - High Precision Welded Axial and Radial Terminals	39
HSP Series - Hermetically Sealed Precision Axial Terminals	40
P Series - Epoxy Molded Precision Axial Terminals	40
Wirewound and Metal Oxide	
TWW/TWM Series - Ceramic Housed Radial Terminal	41
TUW/TUM Series - Ceramic Housed Axial Terminal	42

Wirewound High Energy	
30 Series - High Energy Axial Terminal	43-44
825 Series - High Energy Heat Sinkable	43-44
RH Series - High Energy Surface Mount	43-44
Wirewound High Current	
PFE/PFR Series - Powr-Rib ${ }^{\text {® }}$ Edgewound and Round Wire	48-49
14984 Series - Round Edgewound	50
Carbon and Ceramic Composition	
RC Series - Carbon Composition (0.25 and 0.5 Watt)	9-11
RC Series - Ceramic Composition (0.5 Watt and above)	9-11
Little Demon ${ }^{\circledR}$ Series - Carbon Composition Molded Axial Terminal	51
OX/OY Series - Ceramic Composition Axial Terminal	52
A Series - PulsEaters ${ }^{\circledR}$ Ceramic Composition Radial Terminals	53
Thick Film Power	
TA Series - Power Chip ${ }^{\circledR}$ Alumina Substrate Radial Terminal	54
TAH Series - 20 Watt TO220 Package Heat Sinkable	55
TBH Series - 25 Watt TO220 Package Heat Sinkable	56
TCH Series - 35 Watt TO220 Package Heat Sinkable	57
TDH Series - 35 Watt TO220 Package Heat Sinkable Surface Mount58	
TEH Series - 70 Watt TO247 Package Heat Sinkable	59
TFH Series - 85 Watt TO264 Package Heat Sinkable	60
TGH Series - 120 and 200 Watt SOT227 Package Heat Sinkable	61
TGHG Series -100 Watt SOT227 Package Current Sense	61a
TK Series - 20 Watt TO220 Package Thick Film Heat Sinkable	62
TN Series - 15 Watt TO220 Package Thin Film Heat Sinkable	62
TL Series - Modular Heat Sinkable	63-64
TAP600 Series - 600 Watt Heat Sinkable Planar	65
TAP800 Series - 800 Watt Heat Sinkable Planar	65a
TAP1000 Series - 1000 Watt Heat Sinkable Planar	66
Thick Film High Energy	
TFS Series - Surge Capable Non Inductive	67
Thick Film High Voltage/High Precision	
Surface Mount (SMD) Constructions	3-13
Slim-Mox Series - Radial Terminal	68-70
Super-Mox - High Voltage	71
Mini-Mox Series - (0.25 Watt and 0.50 Watt) Axial Terminal	72
Mini-Mox Series - Axial Terminal	73
Maxi-Mox Series - Axial Terminal	74
Power-Mox Series - Tubular	75
Power-Mox Dividers - Tubular	75
RX-1M Series - Axial Terminal	76
Engineering Resistor Kits	76
Variable Voltage Controls	
Wirewound Power Rheostats	77-78
Potentiometers - Molded Composition	79
Power Tap Switches	80-81
Rheostat and Tap Switch Hardware	82
Solid State Power Controls	83
Resistance and Capacitance Selectors	84
Application Notes	
Product Weights	85
Resistor Selection	86-94
Preferred Standard Resistance Values; Ohm's Law	97
Resistor Terminology	98-99
Resistance Value Abbreviations and Part Numbering Structure	99
Using the Website: http://www.ohmite.com/	95-96

Ohmite History

Ohmite Manufacturing Company has been the leading provider of resistive products for high current, high voltage, and high energy applications for over 80 years. The company's full complement of resistor construction includes wirewound, wire element, thick film, and ceramic composition.

Ohmite Manufacturing Company started operations in a small shop on the west side of Chicago in 1925. Founded by David T. Siegel, the company's focus was to manufacture carbon and wire wound "lug" resistors for Chicago's growing radio manufacturing industry. As the electronics industry grew and continued to develop, Ohmite continued evolving to service ever changing design requirements. In 1953, the company moved into a newly built factory and offices in Skokie, Illinois.

Through acquisition, Ohmite added the wirewound capabilities of Memcor-Truohm in 1996 and Ward Leonard Resistors in 1999. With this acquisition, Ohmite added a production facility in Barbados W.I. enabling the company to expand into tighter tolerance technology. Victoreen Components, an experienced specialist in Thick Film technology for high voltage applications, was added to the Ohmite family in 1999.

In 1998, Ohmite was acquired by Heico Companies LLC; a multinational, U.S. based holding company. The Skokie plant after many years of service was vacated and all operations were moved to Matamoros, Mexico while the Headquarters remained in Rolling Meadows, Illinois. 2006 saw Ohmite continue to grow and enhance its product offerings by acquiring Vishay's Angstrohm Rheostat and Ultronix Precision Resistor divisions.

Strengthened by the backing of Heico Companies LLC, Ohmite strives to maintain the flexibility needed to handle both large and small requirements. Made to order parts are always considered and new technologies are always being evaluated. Product availability in today's market is critical to the success of our customers. Ohmite's network of international distributors and sales representatives enables us to fulfill the requirements of an increasingly global marketplace.

We offer a broad selection of Power Resistors to worldwide customers in the industrial, medical, military, and aerospace industries. Through ongoing product development, we continue to provide the latest in resistor technology required by today's sophisticated high voltage, high current, and high energy circuit designs. We thank you for your interest in our products, and invite you to use Component Selector 4000G and www.ohmite.com to find a solution to your design challenges.
Facilities
Rolling Meadows, IL (Headquarters) Matamoros, Mexico (Manufacturing) Barbados, West Indies (Manufacturing) Brownsville, TX (Distribution Center)

Mission Statement

Ohmite's mission is to be the leading provider of resistive products for high current, high voltage, and high energy applications to worldwide customers in the industrial, medical, military and aerospace markets. Driven by highly efficient and dedicated employees, we will exceed customer and shareholder expectations through excellent service, superior quality and innovative product solutions. Our employees will communicate this mission to our vendors, representatives and distributor partners to solicit and ensure their essential participation. We will deploy our resources in response to changing customer needs while maintaining our service, quality, and profitability in the markets where we choose to compete.

RoHS Changeover Position Statement

In an effort to better serve our customers during our industry's transition to RoHS compliance, Ohmite Manufacturing is committed to stocking both RoHS compliant and non RoHS compliant products whenever possible. RoHS compliant parts will be designated with an "E" within the body of the part number. Non compliant part numbers will remain active throughout this changeover. The RoHS initiative may not affect certain customers in the military and aerospace industry. It is our goal to keep both our RoHS exempt and non exempt customers satisfied with our product selection. All non compliant part numbers will be kept as long as industry demand exists. This strategy will ensure that we will be able to satisfy whatever plating option our customer base requires.

Terms and Conditions of Sale

Factory Terms

Standard payment terms for components ordered from the factory by firms with established credit is 1\%, 10th and 25th, net 30 days. F.O.B. plant of manufacture. No freight allowed.

Return Policy

Specific written permission to return goods must be obtained from Ohmite prior to return.

Warranty

No warrants are expressed or implied other than those published in Ohmite policies. Ohmite reserves the right to make changes in product specifications and availability without notice or liability. Some products are electro-mechanical devices. They are subject to mechanical wear and, therefore, have a finite life.

General Notes

Ohmite reserves the right to make changes in product specifications and availability without notice or liability. The information in this catalog is based on data obtained by our own research and isconsidered accurate. However, no warranty is expressed or implied regarding the accuracy of this data, the results to be obtained from the use thereof, or that any such use will infringe on any patent. This information is furnished upon the condition that the person receiving it shall make their own tests to determine the suitability thereof for their particular purpose. Maximum working voltage ratings of all Ohmite products are based upon the maximum resistance value available in each specific series. For each selected resistance, use Ohm's Law ($\mathrm{V}=\sqrt{\mathrm{P}^{*} \mathrm{R}}$) to calculate maximum working voltage.

Ohmite’s High Voltage Flip Chip Series incorporates high accuracy screen printing technology to achieve high voltage capability in a stable flip chip SMD chip resistor package. The HVF Series offers unmatched performance in comparison to standard chip resistors. Its unique design provides lower voltage and temperature coefficients, less noise, tighter tolerances, better stability, higher resistance values, and higher voltage ratings. HVF is available in convenient 1206 and 2512 footprints.

F E ATURES

- High voltage up to 3,000 volts
- Industry standard sizes
- Working temperature range $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
- Designed for automatic insertion

DERATING

SPECIFICATIONS

Resistance Range:

$1 \mathrm{~K} \Omega$ to $100 \mathrm{G} \Omega$
Resistance Tolerance: $\pm 1 \%$ std.; 5% for HVF1206 100M Ω or more.
Temperature Coefficient:
$\pm 100 \mathrm{ppm}$ std.
Coating: Silicone
Solder Pad Material: Silver (PdAg)

LAND PATTERN (in.)

Land pattern dimensions are for reference only

	VOLTAGE COEFFICIENT OF RESISTANGE		
Series	Resistance Range	VCR (-ppm/V)*	
$\mathbf{1 2 0 6}$	$1 \mathrm{~K} . .10 \mathrm{M} \Omega$	<3.20	
	$10 \mathrm{M} . .100 \mathrm{M} \Omega$	<15.00	*Typical values. Voltage coefficient of
	$100 \mathrm{M} . .1 \mathrm{G} \Omega$	<29.00	resistance strongly depends on the
	$1 \mathrm{G} \Omega . .5 \mathrm{G} \Omega$	<40.00	resistance value. Contact Ohmite for
$\mathbf{2 5 1 2}$	$1 \mathrm{~K} . .30 \mathrm{M} \Omega$	<0.80	details.
	$30 \mathrm{M} . .300 \mathrm{M} \Omega$	<4.00	
	$300 \mathrm{M} . .3 \mathrm{G} \Omega$	<7.00	
	$3 \mathrm{G} \Omega . .5 \mathrm{G} \Omega$	<10.00	

ORDERING INFORMATION

RoHS Compliant $\quad\left[\begin{array}{l}\text { Taping Code } \\ \text { blank = bulk package } \\ \mathrm{T}=\text { tape \& reel }\end{array}\right.$ Compliant $\mathrm{T}=$ tape \& reel

Check product availability at www.ohmite.com

STANDARD PART NUMBERS FOR HVF SERIES		
Ohms	HVF1206	HVF2512
25 K	HVF1206T2502FE	HVF2512T2502FE
50K	HVF1206T5002FE	HVF2512T5002FE
75K	HVF1206T7502FE	HVF2512T7502FE
100K	HVF1206T1003FE	HVF2512T1003FE
250K	HVF1206T2503FE	HVF2512T2503FE
500 K	HVF1206T5003FE	HVF2512T5003FE
1000K	HVF1206T1004FE	HVF2512T1004FE
1500K	HVF1206T1504FE	
2000K	HVF1206T2004FE	HVF2512T2004FE
2500K	HVF1206T2504FE	HVF2512T2504FE
5000K	HVF1206T5004FE	HVF2512T5004FE
7500K	HVF1206T7504FE	HVF2512T7504FE
1G	HVF1206T1007JE	HVF2512T1007FE
		HVF2512T5007FE
10G	HVF1206T1008JE	

High Voltage Flip Chip Film

	Resistance	Power Rating	Voltage		W		$\pm 0.008)$	Std. Qty./
Series	Range	Tol. (mW)	Rating*	L	W		T (max.)	Reel ${ }^{* *}$
HVF1206	$\begin{aligned} & 61 \mathrm{~K}-100 \mathrm{M} \\ & 100 \mathrm{M}-100 \mathrm{G} \end{aligned}$	$\begin{aligned} & 1 \% \text { std. } 300 \\ & 5 \% \end{aligned}$	$1,500$	0.128	0.063	0.018	8.028	1000
HVF2512 1K-100G		\% std. 1000	3,000	0.252	0.126	0.026	0.032	1000
Use Ohm's Law ($V=\sqrt{ } P^{} R$) to calculate maximum working voltage. **Maximum available quantity per reel is 3,500 for 1206 size and 2,000 for 2512 size; call 1-866-9-OHMITE for details.								

PERFORMANCE DATA		
Insulation Resistance	$>10,000 \mathrm{M} \Omega$	500 Volt $25^{\circ} \mathrm{C} 75 \%$ relative humidity
Dielectric Strength	$>1,000$ Volt	$25^{\circ} \mathrm{C} 75 \%$ relative humidity
Thermal Shock	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.50 \% \text { max. } \end{aligned}$	MIL Std. 202, method 107 Cond. C (IEC 68-2-14)
Overload	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.50 \% \text { max. } \end{aligned}$	1,5 x Pnom, 5 sec (do not exceed max. voltage)
Moisture Resistance	$\begin{aligned} & \Delta \mathrm{R} / \mathrm{R}<0.1 \% \text { typ., } \\ & 0.50 \% \text { max. } \end{aligned}$	MIL Std. 202, method 106 (IEC 68-2-3)
Load Life	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.50 \% \text { max. } \end{aligned}$	1000 hours at rated power (IEC 115-1)

TAPE AND REEL SPEGIFICATIONS

Per EIA Std. RS-481

LVC Series

Low Value Thick Film Chip

Series	Power Rating (W @70응)	Resistance Range (Ω)	$\begin{gathered} \text { TCR } \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Tolerance	Available Values
LVC06	0.25W	0.010-0.030	$0 \pm 500 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.033-0.051	$0 \pm 200 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.056-0.100	$0 \pm 100 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.100-0.976	$0 \pm 200 \mathrm{ppm}$	1\%, 2\%, 5\%	E24, E96
LVC20	0.5W	0.010-0.030	$0 \pm 500 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.033-0.100	$0 \pm 200 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.100-0.976	$0 \pm 100 \mathrm{ppm}$	1\%, 2\%, 5%	E24, E96
LVC25	1.0W	0.010-0.030	$0 \pm 500 \mathrm{ppm}$	1\%, 2\%, 5\%	E12
		0.033-0.100	$0 \pm 200 \mathrm{ppm}$	1\%, 2\%, 5%	E12
		0.100-0.976	$0 \pm 100 \mathrm{ppm}$	1\%, 2\%, 5%	E24, E96

	DIMENSIONS (in.)							
Size	\mathbf{L}	\mathbf{W}	\mathbf{t}	\mathbf{a}	\mathbf{b}	\mathbf{c}		
LVCO6	$\mathbf{0 . 1 2 6}$	$\mathbf{0 . 0 6 3}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 9}$		
(EIA size 1206)	+0.002	+0.002	+0.004	+0.010	+0.012			
	-0.008	-0.006	-0.004	-0.010	-0.012			
LVC20	$\mathbf{0 . 1 9 7}$	$\mathbf{0 . 0 9 8}$	$\mathbf{0 . 0 2 4}$	$\mathbf{0 . 0 2 4}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 1 5}$		
(EIA size 2010)	+0.008	+0.006	+0.004	+0.008	+0.012			
	-0.008	-0.006	-0.004	-0.008	-0.012			
LVC25	$\mathbf{0 . 2 5}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 2 0}$		
(EIA size 2512)	+0.008	+0.008	+0.004	+0.008	+0.008			
	-0.008	-0.008	-0.004	-0.008	-0.008			

LAND PATTERN (in.)

Land pattern dimensions are for reference only

REEL SPECIFICATIONS

Ohmite's LVC Series low value chip resistors are ideal for today's current sense applications requiring low profile, low cost solutions. Available in $0.25,0.5$, and 1 watt sizes, footprints are 1206, 2010, and 2512 size respectively. These resistors are offered in ohmic ranges from 0.05 ohm to 10 hm in standard $\pm 5 \%$ E24 values, 1% tolerance available on request.

The LVC Series resistors are well suited for a variety of industrial and commercial applications.

F E A T U R E S

- Industry Standard Sizes
- Terminal Barrier Resists Ag Migration
- Working Temperature Range is from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Designed for Automatic Insertion

A P P L I C A T I O N S

- Switching Power Supplies
- Cellular
- Telecom and Wireless
- Computer
- RF

SPECIFICATIONS

Material
Substrate: Alumina
Resistor: Thick Film
Coating: Glass

PERFORMANGE DATA		
Load Life	$1000 \mathrm{Hrs} 70^{\circ} \mathrm{C}$	$\Delta \mathrm{R} \pm(3.0 \%+0.01) \Omega$
Humidity	$1000 \mathrm{Hrs} 60^{\circ} \mathrm{C} 90 \sim 95 \% \mathrm{RH}$	$\Delta \mathrm{R} \pm(2.0 \%+0.01) \Omega$
Temperature Cycle	5 Cycles $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\Delta \mathrm{R} \pm(1.0 \%+0.01) \Omega$
High Temp Operation	$1000 \mathrm{Hrs} 125^{\circ} \mathrm{C}$	$\Delta \mathrm{R} \pm(1.0 \%+0.01) \Omega$
Low Temp Operation	$1000 \mathrm{Hrs}-55^{\circ} \mathrm{C}$	$\Delta \mathrm{R} \pm(1.0 \%+0.01) \Omega$
Short Time Overload	5 Sec. $2.5 \times$ Rated Power	$\Delta \mathrm{R} \pm(2.0 \%+0.01) \Omega$
Effects of Solder Heat	10 Sec. $260^{\circ} \mathrm{C}$	$\Delta \mathrm{R} \pm(1.0 \%+0.01) \Omega$
Derating	100\% @ $70^{\circ} \mathrm{C}$, Derates Linear	rly to Zero @ $125^{\circ} \mathrm{C}$
	ELEGTRICAL	
Electrical	$\begin{gathered} \text { LVC06 } \\ 1206 \end{gathered}$	LVC20 LVC25 2010 2512
Rated Power Watts	0.25	0.501 .0
Temperature Coeffici Resistance Range (Ω)	ient ppm/ ${ }^{\circ} \mathrm{C}$ $0.05-0.09$ $\mathrm{~N} / \mathrm{A}$ $0.10-0.18$ 200 $0.20-1.0$ 100	350 350 100 100 100 100
Max. Working Volts $\quad \mathrm{V}=\sqrt{\mathrm{PR}} \quad(\mathrm{P}=$ Rated Watts, $\mathrm{R}=$ Resistance Value)		
Resistance Tolerance $\pm 5 \%$ Std, 1\% Available		
Quantity Per Reel	5,000	4,000 4,000

ORDERING INFORMATION

Check product availability at www.ohmite.com

> Our friendly Customer
> Service team can be reached at $\mathbf{8 6 6 - 9}-0 \mathrm{HMITE}$

LVK Series

Four Terminal High
Precision Current Sense
LVK 12, LVK20, LVK24
(0.5, 0.75 \& 1 watt)

	DIMENSIONS (mm)								
Size	L	W	\mathbf{t}	a	b				
LVK12 (1206)	3.2 ± 0.2	1.6 ± 0.2	0.5 ± 0.15	1.0 ± 0.2	0.55 ± 0.2				
LVK20 (2010)	5.0 ± 0.2	2.5 ± 0.2	0.5 ± 0.15	1.7 ± 0.2	0.9 ± 0.2				
LVK24 (2412)	6.4 ± 0.2	3.2 ± 0.2	0.5 ± 0.15	2.1 ± 0.2	1.2 ± 0.2				
LVK25 (1224)	3.2 ± 0.2	6.4 ± 0.2	0.5 ± 0.2	0.4 ± 0.2	2.7 ± 0.2				

LAND PATTERN (mm)
LVK25 (1224)

Series	L	W	A	B
LVK12	1.0	1.1	2.2	0.5
LVK20	3.4	1.8	2.6	0.7
LVK24	4.2	2.4	2.2	0.8

Current sense resistors enable
the measurement of current flow in a circuit by monitoring a voltage drop across a precisely calibrated resistance. The LVK chip features four terminals, also known as a "Kelvin" configuration. This configuration enables current to be applied through two opposite terminals and a sensing voltage to be measured across the other two terminals, eliminating the resistance and temperature coefficient of the terminals for a more accurate current measurement.

Isolating the voltage and current terminals (see schematic) facilitates a very accurate current measurement. Ohmite's proprietary technology offers an excellent Temperature Coefficient of Resistance (TCR) even for very low resistance values. The resistive element consists of a durable, anti-corrosive metal alloy that combines reliable performance with the ability to withstand harsh environments.

FEATURES

- Designed for automatic insertion
- Industry standard sizes
- High-precision kelvin connect capability in a small package

SPECIFICATIONS
Resistance Range: 0.001Ω - 0.05Ω
Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Rated Ambient Temperature: $+70^{\circ} \mathrm{C}$
Resistance Tolerance:
0.5\% and 1\% standard

Temperature Coefficient: LVK12, LVK20, LVK24: 50ppm standard
LVK25: 100ppm, 200ppm, or 300ppm based on resistance value
Terminals: 100% matte tin

SCHEMATIC

STANDAR I VALIES			
LVK12	LVK20	LVK24	LVK25
1\% Tolerance			
0.01	0.01	0.01	0.001
0.012		0.012	0.002
	0.015	0.015	0.003
			0.005
0.02	0.02	0.02	
0.024	0.027		
0.03	0.03	0.03	0.01
		0.039	
	0.039		
0.047		0.047	
0.05	0.05	0.05	
	0.5%	Tolerance	
0.01	0.01	0.01	
0.02	0.02	0.02	
0.03	0.03	0.03	
0.05	0.05	0.05	

FCSL Series

Metal Foil Current Sense

1. Alumina substrate
2. Resistive element
(Ni-Cu Alloy)
3. Electrode (Ni, Sn)
4. Protective coating
(Epoxy resin)
5. Marking
(Epoxy resin)

Series	Power Rating	Resistance Range	Tol.	$\begin{gathered} \text { TCR } \\ \left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$			
FCSL64	2.0W	$\begin{gathered} 1 \mathrm{~m} \Omega \sim 2 \mathrm{~m} \Omega \\ 3 \mathrm{~m} \Omega \sim 50 \mathrm{~m} \Omega \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ & \pm 1 \% \end{aligned}$	$\begin{gathered} \pm 100 \\ \pm 50 \end{gathered}$	0.122/3.1	$\begin{aligned} & 0.248 / 6.3 \\ & 0.055 / 1.4 \end{aligned}$	$0.047 / 1.2$
FCSL76	3.0W	$\begin{gathered} 1 \mathrm{~m} \Omega \sim 2 \mathrm{~m} \Omega \\ 3 \mathrm{~m} \Omega \sim 50 \mathrm{~m} \Omega \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ & \pm 1 \% \end{aligned}$	$\begin{gathered} \pm 100 \\ \pm 50 \end{gathered}$	0.15/3.8	$\begin{gathered} 0.3 / 7.6 \\ 0.065 / 1.65 \end{gathered}$	$0.053 / 1.35$
FCSL90	4.0W	$\begin{gathered} 1 \mathrm{~m} \Omega \sim 2 \mathrm{~m} \Omega \\ 3 \mathrm{~m} \Omega \sim 50 \mathrm{~m} \Omega \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ & \pm 1 \% \end{aligned}$	$\begin{gathered} \pm 100 \\ \pm 50 \end{gathered}$	0.177/4.5	$\begin{gathered} 0.35 / 8.9 \\ 0.079 / 2.0 \end{gathered}$	$0.063 / 1.6$

ORDERING INFORMATION	
FCSL64R005 JERR	
Check product availability at www.ohmite.com	

STANDARD VALUES

Ohms	2 Watts	3 Watts	4 Watts		Tolerance		TCR
0.0010	FCSL64R001JE	FCSL76R001JE	FCSL90R001JE	$\pm 5 \%$	$\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
0.0020	FCSL64R002GE	FCSL76R002GE	FCSL90R002GE	$\pm 2 \%$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
0.0050	FCSL64R005FE	FCSL76R005FE	FCSL90R005FE	$\pm 1 \%$	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
0.0100	FCSL64R010FE	FCSL76R010FE	FCSL90R010FE	$\pm 1 \%$	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
0.0250	FCSL64R025FE	FCSL76R025FE	FCSL90R025FE	$\pm 1 \%$	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
0.0500	FCSL64R050FE	FCSL76R050FE	FCSL90R050FE	$\pm 1 \%$	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		

Ohmite continues to add to its complement of Current Sense offerings with the FCS Series. FCS incorporates proven metal foil technology to produce the ultimate in a current sense resistor. FCS features the effective combination of very low and stable TCRs (Temperature Coefficient of Resistance) available in a wide selection of very low ohmic values. Power ratings up to 4 Watts makes FCS the ideal choice for your current sensing applications.

FEATURES

- High Voltage Ratings
- Smaller Package Sizes
- Low Cost
- Wraparound Terminals

SPECIFICATIONS

Prefered Number Series for

 Resistors:$\pm 1 \%, 2 \%:$ E96, E24
$\pm 5 \%, 10 \%$: E24

Material

Substrate: Alumina
Resistor: Thick Film
Electrical
Tolerance: 1-10\%
Derating: Linearly from 100% at $70^{\circ} \mathrm{C}$ to 0% at $125^{\circ} \mathrm{C}$
Isolation Voltage: 500 V
(ex. MMC06: 100V)
Oper. Temp. Range: $-55^{\circ} \sim+125^{\circ}$

High Voltage Thick Film SMD Chip

Series (Size in./met.)	Resistance Range	$\begin{gathered} \text { TCR } \\ 10^{-6} /{ }^{\circ} \mathrm{C} \end{gathered}$	Power Rating (W) @70 ${ }^{\circ} \mathrm{C}$	Voltage Rating*	Isolation Voltage	L	$w^{\text {Dim }}$	ensions (in./m	m) A	B	$\begin{aligned} & \text { Qty./ } \\ & \text { Reel } \end{aligned}$
$\begin{aligned} & \text { MMC06 } \\ & (0603 / 1608) \end{aligned}$	$\frac{470 \Omega \sim 10 M \Omega}{47 \Omega \sim 464 \Omega}$	$\begin{aligned} & \pm 100 \\ & \pm 200 \end{aligned}$	0.1	200	100	$\begin{gathered} 0.063 \pm .004 \\ 1.6 \pm 0.1 \end{gathered}$	$\begin{aligned} & 0.031 \pm .006 \\ & 0.8 \pm 0.15 \end{aligned}$	$\begin{aligned} & 0.018 \pm .004 \\ & 0.45 \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.012 \pm .004 \\ & 0.3 \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.012 \pm .004 \\ & 0.3 \pm 0.1 \end{aligned}$	5000
$\begin{aligned} & \text { MMCO8 } \\ & (0805 / 2012) \end{aligned}$	$\begin{gathered} 100 \Omega \sim 10 \mathrm{M} \Omega \pm+1 \% \& \pm 2 \% \\ \frac{100 \Omega \sim 51 \mathrm{M} \Omega \pm 5 \%}{47 \Omega \sim 97.6 \Omega} \mathrm{ta} \mathrm{\%} \end{gathered}$	$\begin{aligned} & \pm 100 \\ & \pm 200 \end{aligned}$	0.125	300	500	$\begin{gathered} 0.079 \pm .004 \\ 2.0 \pm 0.1 \end{gathered}$	$\begin{aligned} & 0.049 \pm .004 \\ & 1.25 \pm 0.10 \end{aligned}$	$\begin{aligned} & 0.022 \pm .004 \\ & 0.55 \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.016 \pm .008 \\ & 0.4 \pm 0.2 \end{aligned}$	$\begin{aligned} & 0.016 \pm .008 \\ & 0.4 \pm 0.2 \end{aligned}$	5000
MMC12 (1206/3216)	$\begin{gathered} 100 \Omega \sim 10 \mathrm{M} \Omega \pm \pm \% \& \pm 2 \% \\ \frac{100 \Omega \sim 51 \mathrm{M} \Omega \pm 5 \% ~ \& ~}{47 \Omega} 9 \sim 97.6 \Omega \end{gathered}$	$\begin{aligned} & \pm 100 \\ & \pm 200 \end{aligned}$	0.25	400	500	$\begin{gathered} 0.126 \pm .004 \\ 3.2 \pm 0.1 \end{gathered}$	$\begin{aligned} & 0.063 \pm .006 \\ & 1.6 \pm 0.15 \end{aligned}$	$\begin{aligned} & 0.022 \pm .004 \\ & 0.55 \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.020 \pm .01 \\ & 0.5 \pm 0.25 \end{aligned}$	$\begin{aligned} & 0.020 \pm .01 \\ & 0.5 \pm 0.25 \end{aligned}$	5000
$\begin{aligned} & \text { MMC25 } \\ & (2512 / 6332) \end{aligned}$	$\begin{gathered} 560 \Omega \sim 20 \mathrm{M} \Omega \pm \pm \% \& \pm 2 \% \\ 560 \Omega \sim 51 \mathrm{M} \Omega \pm 5 \% \& \pm 10 \% \\ \hline 100 \Omega \sim 49 \Omega \\ \hline 47 \Omega \sim 97.6 \Omega \end{gathered}$	$\begin{array}{r} \pm 100 \\ \hline \pm 200 \\ \pm 00 \sim-20 \end{array}$	1.0	800	500	$\begin{gathered} 0.248 \pm .004 \\ 6.3 \pm 0.1 \end{gathered}$	$\begin{aligned} & 0.126 \pm .006 \\ & 3.2 \pm 0.15 \end{aligned}$	$\begin{aligned} & 0.022 \pm .004 \\ & 0.55 \pm 0.1 \end{aligned}$	$\begin{aligned} & 0.024 \pm .008 \\ & 0.6 \pm 0.2 \end{aligned}$	$\begin{aligned} & 0.024 \pm .008 \\ & 0.6 \pm 0.2 \end{aligned}$	4000

Use Ohm's Law $\left(V=\sqrt{P^{} R}\right)$ to calculate maximum working voltage.
Note: Limiting Element Voltage can only be applied to resistors when the resistance is equal to or higher than the critical resistance value.

DERATING

LAND PATTERN (in.)
Land pattern dimensions are for reference only

Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

ORDERING INFORMATION

Note: Units are marked with 3-digit (E24 Series) or 4-digit (E96 Series). 4-digit marking not available on MMCO6 sizes.

Standard Par	NUMBER	FOR M	AGRO CHIP
	$\begin{gathered} \text { Mмсо8F } \\ 1 \% \% \\ 300 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { MMC12F } \\ 19 \% \\ 400 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { MмC25F } \\ 1000 \\ 800 \mathrm{~V} \end{gathered}$
Ohms			
250K MMC06F2503TP	08F2503		
750K	MMCO8F5003TP M	TP	
1 M 1.5 M	MMC08F1004TP	MMC12F1004TP MMC12F1504TP	MMC25F1004T
	C08		
5M $\mathrm{MMC06F5004TP}$ 10M MMC06F1005TP		MMC12F5004TP	MMC25F5004TR MMC25F 1005TR

With J-bend Option:

NAS CC21AA-D22W-OFA J Lead 0.050" centers

$0.055^{\prime \prime}$ typ.
(1.40mm)

Ohmite's MacroChip resistors bring precision high voltage capabilities to surface mount applications. Designed with thick film on alumina substrate technology, the resistors can be provided in precision tolerances, high voltage ratings, and high resistance values. The planar package design is low profile for easy use with instrumentation, medical equipment, voltage regulators, and power supplies.

FEATURES

- Non-inductive design (less than 50 nanohenries)
- Low voltage coefficient
- Surface mount
- Pd Ag terminations
- J-bend terminals for applications involving shock and vibration

APPLICATIONS

- Medical instrumentation
- Power Supplies
- Avionics
- Light Magnification Systems

SPECIFICATIONS

Material

Resistor: Thick film on Alumina
Electrical
Resistance Range:
100 Ohms to $5,000 \mathrm{M}$
Power Rating: 0.75 W to 3.25 W
Voltage Rating: 2.0 KV to 10.0 KV
Tolerance: 0.5% to 20%
Operating Temperature:
$-55^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
TCR and VCR: see Slim Mox, page 70
Note: Silver solder is recommended for Macrochip resistors. Leaching of the silver in the termination will occur if non-silver solder is used. 60/40 tin-lead solders are not recommended for use with the Macrochip product.

Ohmite	Resistan	Power	Voltage	Dimensions (in./mm)			Standard Temperature Coefficient 50PPM $/{ }^{\circ} \mathrm{C} \quad 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$		Qty./Reel	
Series	Range (0hms)	@ $25^{\circ} \mathrm{C}$	Rating	A $\pm .01$ "	B $\pm .01$ "	B' max. (J-bend)			w/J-bend	w/o J-bend
MC101	100Ω to 1,000M	0.75W	2.0KV	0.25" (6.35)	0.25 " (6.35)	$0.29 "(7.37)$	100 2 -100M	101M-1,000M	1000	2500
MC102	200Ω to $5,000 \mathrm{M}$	1.50W	5.0KV	0.25 " (6.35)	0.50 " (12.70)	0.54 " (13.72)	200 2 -250M	251M-5,000M	1000	2500
MC103	250Ω to 5,000M	2.00 W	7.5KV	0.25 " (6.35)	0.75 " (19.05)	0.79" (20.07)	2508-100M	101M-5,000M	1000	2500
MC104	1 K to $5,000 \mathrm{M}$	2.50 W	10.0KV	0.25 " (6.35)	1.00 " (25.40)	1.04" (26.42)	$500 \Omega-450 \mathrm{M}$	451M-5,000M		
MC202	500Ω to $5,000 \mathrm{M}$	2.50 W	5.0KV	0.50 " (12.70)	0.50 " (12.70)		500^-200M	201M-5,000M		
MC204	1 K to $5,000 \mathrm{M}$	3.25 W	10.0KV	0.50 " (12.70)	1.00 " (25.40)		1K-375M	376M-5,000M		

LAND PATTERN (in.)
Land pattern dimensions are for reference only.

Size	M	N	$\mathbf{0}$	L
MC101	0.280	0.080	0.278	0.120
MC102	0.530	0.080	0.278	0.370
MC103	0.780	0.080	0.278	0.620
MC104	1.030	0.080	0.278	0.870
MC202	0.530	0.080	0.556	0.370
MC204	1.030	0.080	0.556	0.870

	P ERFORMAN C E DATA	
Characteristic	Test Method	Specification
Humidity	MIL-STD-202, Method 103B, Condition B	$\pm 0.25 \%$
Dielectric Withstanding Voltage	MIL-STD-202, Method 301, 750V	$\pm 0.25 \%$
Insulation Resistance	MIL-STD-202, Method 302, Condition A or B	$>10,000 \mathrm{M}$ or greater dry
Thermal Shock	MIL-STD-202, Method 107G, Condition B, B-1, or F	$\pm 0.20 \%$
LIL-STD-202, Method 108A, Condition D	$\pm 1.0 \%$	
Resistance to Solvents	MIL-STD-202, Method 215G	No degradation of coating or marking
Shock (Specified Pulse)	MIL-STD-202, Method 213B, Condition I	$\pm 0.25 \%$
Vibration, High Frequency	MIL-STD-202, Method 204D, Condition D	$\pm .020 \%$
Power Conditioning	MIL-R-49462A, Par 4.8 $\pm 0.50 \%$	

Standard part numbers for macrochip

FEATURES

- Superior thermal expansion cycling
- Inductance less than 10 nanohenries
- Flameproof
- Solderable pads: Tin (Sn) plate
- Lead flexible for thermal expansion
- Low termination stress ("J" terminals)
- Shape provides cooler operation
- Custom values available

DERATING

PERFORMANCE CHARACTERISTICS

Parameter	Requirement	Test Method (JIS C 5202)
Resistance	Within regulated tolerance	$25^{\circ} \mathrm{C}$
T.C.R.	Within specified T.C.R.	Room temperature $/ 100^{\circ} \mathrm{C}$ up
Resistance to Solder Heat	$\pm 2.0 \%$	$350^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}, 3$ seconds
Solderability	95% coverage minimum	$235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 5$ seconds
Moisture Resistance	$\pm 3.0 \%$	$40^{\circ} \mathrm{C}, 90-95 \% \mathrm{RH}, 1000$ hours, no load
Moisture Resistance	$\pm 5.0 \%$	Power rating $\times 1 / 10,40^{\circ} \mathrm{C}, 90$ $-95 \% ~ R H, 1000 ~ h o u r s, ~$ ON, 0.5 hr OFF cycle
Load Life	$\pm 5.0 \%$	Rating voltage, 1000 hours, 1.5 hr ON, 0.5 hr OFF cycle

STANDARD PART NUMBERS FOR GOS SERIES				
	Wattage:	0.25 watt	0.5 watt	1 watt
Ohms	Series:	602SJR	605SJR	610SJR
0.00200Ω			605SJR00200E-T	610SJR00200E-T
0.00300Ω		602SJR00300E-T		610SJR00300E-T
0.00375Ω			605SJR00375E-T	
0.00500Ω		602SJR00500E-T	605SJR00500E-T	
0.00800Ω			605SJR00800E-T	
Check product availability at WWW.ohmite.com				

APPLICATIONS

- Current sensing
- Low inductance
- AC applications (contact Ohmite)
- Feedback

DIIMENSIONS inches(mm)

		L		L2		H		W
602SJR	$\begin{aligned} & 0.39 \pm .008 \\ & (10.0 \pm 0.2) \end{aligned}$		$\begin{gathered} 0.018 \pm .008 \\ (2 \pm 0.2) \\ \hline \end{gathered}$			$\begin{gathered} 0.024 \\ (0.6 \pm 0.1 \end{gathered}$		$\begin{gathered} 0.118 \pm .008 \\ (3.0 \pm 0.2) \\ \hline \end{gathered}$
605SJR	$\begin{aligned} & 0.39 \pm .008 \\ & (10.0 \pm 0.2) \\ & \hline \end{aligned}$		$\begin{gathered} 0.018 \pm .008 \\ (2 \pm 0.2) \\ \hline \end{gathered}$			$\begin{gathered} 0.079 \\ (2 \text { max. }) \end{gathered}$		$\begin{array}{r} 0.20 \pm .008 \\ (5.2 \pm 0.2) \end{array}$
	L	H		D	D		A	W
610SJR	$\begin{aligned} & 0.44 \pm .016 \\ & (11.2 \pm 0.4) \end{aligned}$	$\begin{gathered} 0.137 \pm .016 \\ (3.5 \pm 0.4) \end{gathered}$		$\begin{aligned} & 0.095 \pm \\ & (2.35 \pm \end{aligned}$	$\begin{aligned} & \pm .010 \\ & \pm 0.25) \end{aligned}$	$\begin{array}{r} 0.189 \pm \\ 14.8 \pm \end{array}$	$\begin{aligned} & \pm .030 \\ & \pm .75) \end{aligned}$	$\begin{aligned} & 0.126 \pm .016 \\ & (3.2 \pm 0.40) \\ & \hline \end{aligned}$

ORDERING INFORMATION

RoHS Compliant			
602 SJR00300E-T			
Γ	,	1 1	
Type \&	Tolerance	Ohms	Packaging
Power Rating	$J=5 \%$	R00200 $=0.00200 \Omega$	T = tape and re
$602 \mathrm{~S}=0.25$ watt		$R 00300=0.00300 \Omega$	(optional)
$605 \mathrm{~S}=0.5 \mathrm{watt}$		$R 00375=0.00375 \Omega$	
$610 \mathrm{~S}=1 \mathrm{watt}$			

> Check product availability using the Worldwide Inventory Search at ohmite.com

Surface Mount
Metal Plate Current Sense

(continued)

TAPE inches (mm)

Type	A	B	E	W	P 0	P 1	P 2	T 1
602 SJR	0.057	0.134	0.069	0.079	0.157	0.315	0.079	0.098
	(1.45 ± 0.2)	(3.4 ± 0.2)	(1.75 ± 0.1)	(2.0)	(4.0 ± 0.1)	(8.0 ± 0.1)	(2.0)	(2.5 ± 0.2)
605 SJR	0.057	0.224	0.069	0.079	0.157	0.315	0.079	0.091
	(1.45 ± 0.2)	(5.7 ± 0.2)	(1.75 ± 0.1)	(2.0)	(4.0 ± 0.1)	(8.0 ± 0.1)	(2.0)	(2.3 ± 0.2)
610 SJR	0.461	0.169	0.069	0.945	0.157	0.315	0.079	-
	(11.7 ± 0.1)	(4.3 ± 0.1)	(1.75 ± 0.1)	(24.0 ± 0.2)	(4.0 ± 0.1)	(8.0 ± 0.1)	(2.0)	-

	LAND P AT T R N inches (mm)			
π	M	N	O	L
\dagger	0.622 (16.0)	0.118 (3.0)	0.150 (3.8)	0.394 (10.0)
O	0.622 (16.0)	0.118 (3.0)	0.236 (6.0)	0.394 (10.0)
\downarrow	0.369 (9.36)	0.121 (3.07)	0.142 (3.60)	0.127 (3.22)

Land pattern dimensions are for reference only

MC1RD Series
 SMT-MOX Divider

A complete description of the SLIM-MOX Divider is required.

EXAMPLE:

$\mathrm{R}_{\mathrm{T}}=500 \mathrm{M} \Omega 5 \%$
$\mathrm{R}_{1}=499.5 \mathrm{M} \Omega 5 \%$
$\mathrm{R}_{2}=500 \mathrm{~K} \Omega 1 \%$
Ratio $=R_{T} / R_{2}=1,000: 1,1 \%$
To specify Slim-Mox Dividers, please see our website at: www.ohmite.com/dividers
FEATURES

- Contact Ohmite for custom configurations.

SPECIFICATIONS

Material
Lead: " J " terminal 0.018 " wide tinplated copper
Resistor: Thick film on Alumina

Electrical

Resistance range: $1 \mathrm{M} \Omega-5,000 \mathrm{M} \Omega$
Max. working voltage: 5 KV
Wattage: 1.5W
Maximum ratio: 5,000:1
Ratio TCR: 100ppm; 25ppm and 10ppm available
Ratio tolerances: 0.5% to 5%

F E A T URES

- Tolerance 1\%-5\% standard
- Twelve wattage ratings
- Seven package sizes
- Two mounting designs to accommodate your soldering process
- Four power resistor technologies to optimize your operating performance:

1. Carbon and Ceramic composition for surge and low inductance
2. Metal film for high ohmic value and low T.C.
3. Wire element for inrush current combined with low ohmic values. Resistance values as low as 0.005Ω
4. Power film for high ohmic value and high wattage

- Flexible J-bend terminations

DERATING

Surface Mount Power

RC Series: carbon composition ($1 / 4 \& 1 / 2$ watt) RC Series: ceramic composition (above $1 / 2$ watt) RF Series: metal film

RW Series: wirewound
RP Series: power film

Series*	Wattage	Ohms	Length	Dimensions (in. / mm) Height	Width	Voltage
RCOS2CA	0.25	2.2-5.6M	0.394 / 10.01	0.159 / 4.04	$0.159 / 4.04$	250
RCOR5DB	0.50	2.2-20M	$0.625 / 15.88$	0.226 / 5.74	$0.273 / 6.93$	350
RWOS6BB	0.6	0.005-1K	$0.202 / 5.14$	0.135 / 3.42	0.1 / 2.54	50
RFOS8BA	0.80	1.0-10M	$0.246 / 6.25$	$0.136 / 3.45$	$0.136 / 3.45$	200
RW1S0BA	1.00	$0.005-1 \mathrm{~K}$	$0.246 / 6.25$	$0.136 / 3.45$	0.136 / 3.45	50
RF1SOCA	1.00	1.0-10M	0.394 / 10.01	$0.159 / 4.04$	$0.159 / 4.04$	350
RC1R0EA	1.00	3.3-100K	0.811 / 20.60	0.273 / 6.93	0.273 / 6.93	500
RP1S3CA	1.25	1.0-1M	0.394 / 10.01	0.159 / 4.04	0.159 / 4.04	350
RW1S5CA	1.50	0.005-1.5K	0.394 / 10.01	0.159 / 4.04	$0.159 / 4.04$	75
RP1S5CB	1.50	1.0-1M	0.407 / 10.34	0.222 / 5.64	0.226 / 5.74	350
RP1R5CB	1.50	1.0-1M	0.407 / 10.34	0.222 / 5.64	0.226 / 5.74	350
RW2SOCB	2.00	0.005-5K	0.407 / 10.34	0.222 / 5.64	$0.226 / 5.74$	100
RW2R0CB	2.00	0.005-5K	$0.407 / 10.34$	0.222 / 5.64	$0.226 / 5.74$	100
RP2SODA	2.00	1.0-1M	$0.455 / 11.56$	$0.226 / 5.74$	$0.24 / 6.10$	500
RP2RODA	2.00	1.0-1M	$0.455 / 11.56$	0.226 / 5.74	$0.24 / 6.10$	500
RW2SODA	2.00	0.005-5K	0.455 / 11.56	0.226 / 5.74	0.24 / 6.10	100
RW2R0DA	2.00	0.005-5K	$0.455 / 11.56$	0.226 / 5.74	$0.24 / 6.10$	100
RP2R5DB	2.50	1.0-1M	$0.655 / 16.64$	$0.226 / 5.74$	$0.273 / 6.93$	500
RW3R0DB	3.00	0.005-13K	$0.625 / 15.88$	0.226 / 5.74	$0.273 / 6.93$	200
RP3R0EA	3.00	1.0-1M	$0.811 / 20.60$	$0.273 / 6.93$	$0.273 / 6.93$	750
RW3R5EA	3.50	0.005-25K	0.811 / 20.60	0.273 / 6.93	0.273 / 6.93	350

Military grade versions available; contact Ohmite
*Last two digits designate package size

PERFORMANGE SPECIFICATIONS

Part Number	Power (watts)*	Maximum voltage	1\% tol.	Resistance range 5\% tol.	10\% tol.	$$			Dielectric Withstanding	Tape Size 13" reels	Quantity per reel
RCOS2CA-	0.25	250	-	$2.2 \Omega-1 \mathrm{~K}$	1K-5.6M	-	± 400	± 400	1000 V	16 mm	1500
RCOR5DB-	0.50	350	-	$2.2 \Omega-1 \mathrm{~K}$	1K-20M	-	± 400	± 400	1000 V	24 mm	1000
RW0S6BB-	0.6	50	$0.005 \Omega-1 \mathrm{~K}$	$0.005 \Omega-1 \mathrm{~K}$		± 90	± 50	± 20	1000 V	12 mm	2500
RFOS8BA-	0.8	200	$1 \Omega-5 \mathrm{M}$	-		-	± 100	± 100	1000 V	12 mm	2000
RW1S0BA-	1.0	50	$0.005 \Omega-1 \mathrm{~K}$	0.005 $\mathrm{B}^{-1 \mathrm{~K}}$		± 90	± 50	± 20	1000 V	12 mm	2000
RF1SOCA-	1.0	350	$10 \Omega-1 \mathrm{M}$	1 Ω-10M		-	± 200	± 100	1000 V	16 mm	1500
RC1R0EA-	1.0	500	$3.3-100 \mathrm{~K}(10 \%$ tol only)					-1300	1000 V	32 mm	750
RP1S3CA-_	1.25	350	-	$1 \Omega-1 \mathrm{M}$		-	± 250	± 250	1000 V	16 mm	1500
RP1S5CA-	1.5	75	$0.005 \Omega-1.5 \mathrm{~K}$	$0.005 \Omega-1.5 \mathrm{~K}$		± 90	± 250	± 250	1000 V	16 mm	1500
$\begin{aligned} & \hline \text { RP1S5CB-_ } \\ & \text { RP1R5CB-_ } \end{aligned}$	1.5	350	-	$1 \Omega-1 \mathrm{M}$		-	± 250	± 250	1000 V	16 mm	1000
RW2SOCB RW2ROCB	2.0	100	$0.005 \Omega-5 \mathrm{~K}$	$0.005 \Omega-5 \mathrm{~K}$		± 90	± 50	± 20	1000 V	16 mm	1000
$\begin{aligned} & \hline \text { RP2SODA-- } \\ & \text { RP2RODA- } \end{aligned}$	2.0	500	-	$1 \Omega-1 \mathrm{M}$		-	± 250	± 250	1000 V	24 mm	1000
$\begin{aligned} & \hline \text { RW2SODA- } \\ & \text { RW2RODA- } \end{aligned}$	2.0	100	$0.005 \Omega-5 \mathrm{~K}$	$0.005 \Omega-5 \mathrm{~K}$		± 90	± 50	± 20	1000 V	24 mm	1000
RP2R5DB-	2.5	500	-	$1 \Omega-1 \mathrm{M}$		-	± 250	± 250	1000 V	24 mm	1000
RW3R0DB-	3.0	200	0.005 2 -13K	$0.005 \Omega-13 \mathrm{~K}$		± 90	± 50	± 20	1000 V	24 mm	1000
RP3R0EA-	3.0	750	-	$1 \Omega-1 \mathrm{M}$		-	± 250	± 250	1000 V	32 mm	750
RW3R5EA-	3.5	350	0.005 2 -25K	$0.005 \Omega-25 \mathrm{~K}$		± 90	± 50	± 20	1000 V	32 mm	750
RM0R7EA-	0.75	2500	$1 \mathrm{~K} \Omega$-1000M	$1 \mathrm{~K} \Omega-1000 \mathrm{M}$		-	-	± 50	1000V	32 mm	750
* $25^{\circ} \mathrm{C}$ ambient											ontinued

Surface Mount Power

(continued)

Package Outline Dimensions												
Packages	A	B	C	D	G	1	J	L	M	N	0	P
$\mathbf{B A}^{(\mathrm{in} .)} \begin{gathered} \text { (mm) } \end{gathered}$	$\begin{array}{r} .246 \pm .020 \\ 6.248 \pm .508 \end{array}$	$\begin{array}{r} .136 \pm .005 \\ 3.454 \pm .127 \end{array}$	$\begin{aligned} & .133 \text { REF } \\ & \text { 3.378 REF } \end{aligned}$	$\begin{array}{r} .110 \pm .010 \\ 2.794 \pm .254 \end{array}$. 047 Nom. 1.194 Nom.	$\begin{array}{r} .054 \pm .012 \\ 1.372 \pm .305 \end{array}$	$\begin{array}{r} .136 \pm .005 \\ 3.454 \pm .127 \end{array}$	$\begin{aligned} & .150 \\ & 3.81 \end{aligned}$	$\begin{aligned} & .346 \\ & 8.79 \end{aligned}$	$\begin{array}{r} .098 \\ 2.49 \end{array}$	$\begin{aligned} & .126 \\ & 3.20 \end{aligned}$	$\begin{aligned} & .050 \\ & 1.27 \end{aligned}$
$\text { CA } \begin{gathered} (\mathrm{in} .) \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{r} .394 \pm .020 \\ 10.008 \pm .508 \end{array}$	$\begin{array}{r} .159 \pm .005 \\ 4.039 \pm .127 \end{array}$	$\begin{aligned} & .156 \text { REF } \\ & \text { 3.962 REF } \end{aligned}$	$\begin{array}{r} .220 \pm .010 \\ 5.588 \pm .254 \end{array}$	$\begin{aligned} & .062 \text { Nom. } \\ & \text { 1.575 Nom. } \end{aligned}$	$\begin{array}{r} .078 \pm .012 \\ 1.981 \pm .305 \end{array}$	$\begin{array}{r} .159 \pm .005 \\ 4.038 \pm .127 \end{array}$	$\begin{aligned} & .256 \\ & 6.50 \end{aligned}$	$\begin{array}{r} .524 \\ 13.31 \end{array}$	$\begin{aligned} & .134 \\ & 3.40 \end{aligned}$	$\begin{aligned} & .126 \\ & 3.20 \end{aligned}$	$\begin{aligned} & .060 \\ & 1.52 \end{aligned}$
$\text { CB } \begin{gathered} (\text { in. }) \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{r} .407 \pm .020 \\ 10.338 \pm .508 \end{array}$	$\begin{aligned} & .226 \pm .005 \\ & 5.74 \pm .127 \end{aligned}$	$\begin{array}{r} .222 \text { REF } \\ \text { 5.639 REF } \end{array}$	$\begin{array}{r} .260 \pm .010 \\ 6.604 \pm .254 \end{array}$	$\begin{gathered} .062 \text { Nom. } \\ \text { 1.575 Nom. } \end{gathered}$	$\begin{array}{r} .084 \pm .012 \\ 2.134 \pm .305 \end{array}$	$\begin{array}{r} .222 \pm .005 \\ 5.639 \pm .127 \end{array}$	$\begin{aligned} & .276 \\ & 7.01 \end{aligned}$	$\begin{array}{r} .537 \\ 13.64 \end{array}$	$\begin{aligned} & .131 \\ & 3.33 \end{aligned}$	$\begin{aligned} & .126 \\ & 3.20 \end{aligned}$	$\begin{aligned} & .093 \\ & 2.36 \end{aligned}$
$\begin{array}{cc} \text { DA } & (\mathrm{in} .) \\ (\mathrm{mm}) \end{array}$	$\begin{array}{r} .455 \pm .020 \\ 11.557 \pm .508 \end{array}$	$\begin{array}{r} .240 \pm .005 \\ 6.096 \pm .127 \end{array}$	$\begin{array}{r} .236 \text { REF } \\ \text { 5.994 REF } \end{array}$	$\begin{array}{r} .260 \pm .010 \\ 6.604 \pm .254 \end{array}$	$\begin{aligned} & .062 \text { Nom. } \\ & \text { 1.575 Nom. } \end{aligned}$	$\begin{array}{r} .143 \pm .012 \\ 3.632 \pm .305 \end{array}$	$\begin{array}{r} .226 \pm .005 \\ 5.740 \pm .127 \end{array}$	$\begin{aligned} & .317 \\ & 8.05 \end{aligned}$	$\begin{array}{r} .585 \\ 14.86 \end{array}$	$\begin{aligned} & .134 \\ & 3.40 \end{aligned}$	$\begin{aligned} & .155 \\ & 3.94 \end{aligned}$	$\begin{array}{r} .093 \\ 2.36 \end{array}$
$\begin{array}{ll} \text { DB } & \begin{array}{c} \text { (in.) } \\ (\mathrm{mm}) \end{array} \end{array}$	$\begin{array}{r} .625 \pm .020 \\ 15.875 \pm .508 \end{array}$	$\begin{array}{r} .273 \pm .005 \\ 6.934 \pm .127 \end{array}$	$\begin{gathered} .268 \text { REF } \\ 6.807 \mathrm{REF} \end{gathered}$	$\begin{array}{r} .417 \pm .010 \\ 10.592 \pm .254 \end{array}$	$\begin{aligned} & .062 \text { Nom. } \\ & \text { 1.575 Nom. } \end{aligned}$	$\begin{array}{r} .143 \pm .012 \\ 3.632 \pm .305 \end{array}$	$\begin{array}{r} .226 \pm .005 \\ 5.740 \pm .127 \end{array}$	$\begin{array}{r} .474 \\ 12.040 \end{array}$	$\begin{array}{r} .742 \\ 18.85 \end{array}$	$\begin{aligned} & .134 \\ & 3.40 \end{aligned}$	$\begin{aligned} & .155 \\ & 3.94 \end{aligned}$	$\begin{aligned} & .093 \\ & 2.36 \end{aligned}$
EA (in.) (mm)	$\begin{array}{r} .811 \pm .020 \\ 20.599 \pm .508 \end{array}$	$\begin{array}{r} .273 \pm .005 \\ 6.934 \pm .127 \end{array}$	$\begin{gathered} .268 \text { REF } \\ 6.807 \text { REF } \end{gathered}$	$\begin{array}{r} .572 \pm .010 \\ 14.529 \pm .254 \end{array}$	$\begin{aligned} & .093 \text { Nom. } \\ & \text { 2.362 Nom. } \end{aligned}$	$\begin{array}{r} .143 \pm .012 \\ 3.632 \pm .305 \end{array}$	$\begin{array}{r} .273 \pm .005 \\ 6.934 \pm .127 \end{array}$	$\begin{array}{r} 611 \\ 15.52 \end{array}$	$\begin{array}{r} 1.000 \\ 25.4 \end{array}$	$\begin{array}{r} .195 \\ 4.95 \end{array}$	$\begin{aligned} & .155 \\ & 3.94 \end{aligned}$	$\begin{aligned} & .093 \\ & 2.36 \end{aligned}$
	$\begin{array}{r} .202 \pm .010 \\ 5.140 \pm .508 \end{array}$	$\begin{array}{r} .10 \pm .010 \\ 2.54 \pm .127 \end{array}$	$\begin{aligned} & .095 \text { REF } \\ & \text { 2.41 REF } \end{aligned}$	$\begin{aligned} & .079 \pm .010 \\ & 2.00 \pm .254 \end{aligned}$	$\begin{aligned} & .050 \text { Nom. } \\ & \text { 1.280 Nom. } \end{aligned}$	$\begin{gathered} .065 \pm .012 \\ 1.640 \pm .305 \end{gathered}$	$\begin{array}{r} .135 \pm .005 \\ 3.420 \pm .127 \end{array}$	$\begin{array}{r} 0.078 \\ 1.98 \end{array}$	$\begin{array}{r} 0.328 \\ 8.33 \end{array}$	$\begin{array}{r} 0.125 \\ 3.18 \end{array}$	$\begin{array}{r} 0.126 \\ 3.20 \end{array}$	$\begin{array}{r} 0.026 \\ 0.66 \end{array}$

Note 1: Packages BA and CA are only available with a pedestal base. Packages CB and DA are available in either pedestal or recessed base. Packages DB and EA Land pattern dimensions are for reference only are only available in a recessed base.
Note 2: Test point is .020 above PCB.
Note 3: Tape and reel dimensions per EIA 481 A except "EA" size which is 12 mm component pitch versus 16 mm pitch.

The temperature rise graph data was obtained by a selection of test substrate size and trace width for each resistor size to limit operating temperatures to safe values.

The operating temperature safe rises are either $100^{\circ} \mathrm{C}$ substrate temperature rise or $180^{\circ} \mathrm{C}$ package hot spot temperature rise at $25^{\circ} \mathrm{C}$ ambient.

FR4: 0.062 in. thick; 0.062 in. traces Alumina: 0.040 in. thick; 0.010 in. traces Molding material rated at $205^{\circ} \mathrm{C}$ continuous.

All reels are compatible with major pick-and-place machines and made in accordance with EIA 481 A (except EA size, which is 12 mm component pitch versus 16 mm pitch).

ORDERING INFORMATION	
	(For example, the part number shown is a wirewound resistor, 3.5 watt, recessed base, 32 mm tape size, first case size [A], 1000 ohms 1% tolerance.)

0.6 Watt Wirewound Surface Mount Power

| | | Dimensions (in. / mm) | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Wattage | Ohms | Length | Height | Width | Voltage |
| RWOS6BB | 0.6 | $0.01-100$ | $0.202 / 5.14$ | $0.135 / 3.42$ | $0.1 / 2.54$ | 50 |

	PERFORMANCE DATA	
Temp. cycle	$\left(-55^{\circ} \mathrm{C}\right.$ to $125^{\circ} \mathrm{C}, 1000$ cycles $)$	$\pm 0.5 \%+.05 \Omega$
Load Life	$\left(1000\right.$ hours at $\left.25^{\circ} \mathrm{C}\right)$	$\pm 3.0 \%+.05 \Omega$
Immersion	$\left(260^{\circ} \mathrm{C}\right.$ for 10 sec. $)$	$\pm 0.1 \%+.05 \Omega$
Leaching	$\left(260^{\circ} \mathrm{C}\right.$ Solder immersion, 60 sec. $)$	No visible leaching
Thermal Shock	(Units at $-55^{\circ} \mathrm{C}$, then rated power applied $)$	No mechanical damage
Flammability	UL Material rating	UL94V0

STANDARD PART NUMBERS FOR 2010 SMD

Ohms	Part Number	Ohms	Part Number
0.010	RWOS6BBR010FE	1.00	RW0S6BB1R00FE
0.015	RWOS6BBR015FE	2.00	RW0S6BB2R00FE
0.020	RWOS6BBR020FE	5.00	RW0S6BB5R00FE
0.030	RW0S6BBR030FE	7.50	RW0S6BB7R50FE
0.050	RW0S6BBR050FE	10.00	RW0S6BB10R0FE
0.075	RWOS6BBR075FE	15.00	RW0S6BB15R0FE
0.100	RWOS6BBR100FE	24.00	RW0S6BB24R0FE
0.240	RW0S6BBR240FE	36.00	RW0S6BB36R0FE
0.470	RW0S6BBR470FE	47.00	RW0S6BB47ROFE
0.750	RW0S6BBR750FE	100.00	RW0S6BB100RFE

Check product availability at www.ohmite.com

FEATURES

- 1\% Tolerance standard
- Smallest wirewound on the market
- Available in low ohmic values

TCR

SPECIFICATIONS
$25^{\circ} \mathrm{C}$ ambient
Power: 0.6 watts
Voltage (max.): 50 V
Tolerance: 1\%
Resistance range: $0.010 \Omega-100 \Omega$
Temperature Coefficient:
$0.1 \Omega-1 \Omega: \pm 90$
$1 \Omega-10 \Omega: \pm 50$
$10 \Omega+: \pm 20$
Dielectric Withstanding Voltage: 1000V
Tape Size: 12mm, 13" reel, 2500 pcs. per reel.

DERATING

DIMENSIONS

TAPE AND REEL

FEATURES

- Extremely low resistance and high precision tolerance
- Low T.C.R. achieved ($\pm 50 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$)
- Flameproof UL94-V-0
- Marking: Black body color with white marking

DERATING

TYPICAL SCHEMATIC SURFACE TEMP. RISE

LAND PATTERN
Land pattern dimensions are for refer-

SPECIFICATIONS
TCR max.: $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Rated Ambient Temp: $+70^{\circ} \mathrm{C}$
Oper. Temp. Range:
$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$
RoHS
RW1/RW2 Series
Surface Mount
Four Terminal Current Sense

	Power Rating (watts)	Resistance Range E-12 $(\mathrm{m} \Omega)$	Resistance Tolerance	Dielectric Withstanding Voltage	TCR $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	Qty.// Max.
Reel						

DIIMENSIONS inches (mm)

	RW1SOCK	RW2SODK
\mathbf{L}	$0.425 \pm .02(10.8 \pm 0.5)$	$0.504 \pm .02(12.8 \pm 0.5)$
\mathbf{w}	$0.244 \pm .012(6.2 \pm 0.3)$	$0.323 \pm .012(8.2 \pm 0.3)$
\mathbf{t}	$0.083 \pm .008(2.1 \pm 0.2)$	$0.122 \pm .008(3.1 \pm 0.2)$
\mathbf{a}	$0.118 \pm .012(3.0 \pm 0.3)$	$0.197 \pm .012(5.0 \pm 0.3)$
\mathbf{b}	$0.031 \pm .008(0.8 \pm 0.2)$	$0.039 \pm .008)(1.0 \pm 0.2)$
\mathbf{c}	$0.055 \pm .02(1.4 \pm 0.5)$	$0.079 \pm .02(2.0 \pm 0.5)$
\mathbf{d}	$0.047 \pm .02(1.2 \pm 0.5)$	$0.079 \pm .02(2.0 \pm 0.5)$
\mathbf{e}	$0.051 \pm .012(1.3 \pm 0.3)$	$0.087 \pm .012(2.2 \pm 0.3)$
\mathbf{f}	$0.051 \pm .012(1.3 \pm 0.3)$	$0.087 \pm .012(2.2 \pm 0.3)$
\mathbf{g}	$0.197 \pm .004(5.0 \pm 0.1)$	$0.236 \pm .004(6.0 \pm 0.1)$
\mathbf{h}	$0.098 \pm .004(2.5 \pm 0.1)$	$0.118 \pm .004(3.0 \pm 0.1)$
\mathbf{j}	$0.39(10.0)$	$0.47(12.0)$
\mathbf{k}	$0.08(2.0)$	$0.09(2.3)$
\mathbf{m}	$0.04(1.0)$	$0.05(1.15)$
\mathbf{n}	$0.12(3.0)$	$0.21(5.3)$
\mathbf{o}	$0.24(6.0)$	$0.31(8.0)$
\mathbf{p}	$0.20(5.0)$	$0.24(6.0)$
\mathbf{q}	$0.06(1.6)$	$0.09(2.2)$
\mathbf{r}	$0.08(2.0)$	$0.13(3.2)$
\mathbf{s}	$0.04(1.0)$	$0.06(1.6)$

PERFORMANCE CHARACTERISTICS

Parameter	Requirement $\Delta \mathbf{R}$ Limit Typical		Test Method
Resistance	Within regulated tolerance	-	$25^{\circ} \mathrm{C}$
T.C.R.	Within specified T.C.R.	-	$+25^{\circ} \mathrm{C} /-55^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$
Overload	$\pm 1.0 \%$	$\pm 1.0 \%$	Rated power x 5 for 5 seconds
Resistance to Solder Heat	$\pm 1.0 \%$	$\pm 1.0 \%$	$\begin{aligned} & 260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 10 \text { seconds } \\ & \pm 1 \text { second } \end{aligned}$
Rapid Change of Temperature	$\pm 1.0 \%$	$\pm 0.5 \%$	$-55^{\circ} \mathrm{C}$ (30 minutes), $+125^{\circ} \mathrm{C}$ (30 minutes), 500 cycles
Moisture Resistance	$\pm 2.0 \%$	$\pm 0.5 \%$	$40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 90-95 \% \mathrm{RH}, 1000$ hours, 1.5 hr ON, 0.5 hr OFF cycle
Endurance at $70^{\circ} \mathrm{C}$	$\pm 1.0 \%$	$\pm 0.5 \%$	$70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 1000$ hours, 1.5 hr ON, 0.5 hr OFF cycle
Low Temperature Operation	$\pm 0.5 \%$	$\pm 0.25 \%$	$-55^{\circ} \mathrm{C}$, 1 hour
High Temperature Exposure	$\pm 0.5 \%$	$\pm 0.25 \%$	$+125^{\circ} \mathrm{C}, 100$ hours

Check product availability at WWW.ohmite.com

Miniature Wirewound Current Sense

Type	Power Rating (watts)	Resistance Range (Ω)	Dim. L (mm/in)	Dim. D (mm/in)	Dim. d (mm/in)
WLA	0.5	0.005-0.100	$5.08 / 0.200$	$2.54 / 0.100$	$0.60 / 0.024$
WLB	1	0.005-0.100	7.00/0.276	$3.00 / 0.120$	$0.60 / 0.024$
WLC	2	0.010-0.100	11.4 / 0.450	$6.86 / 0.270$	0.80 / 0.031

PERFORMANCE CHARACTERISTICS

Test	Conditions Of Test	Performance
Thermal Shock	Rated power applied until thermal stability, $-55^{\circ} \mathrm{C}+0^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}, 15 \mathrm{~min}$.	$\pm 2.0 \%$
Short-time Overload	5 times rated wattage for 5 seconds	$\pm 2.0 \%$
Solderability	Method 208 of MIL-STD-202	$\pm 2.0 \%$
Terminal Strength	Pull test:10 pounds, 5 to10 seconds, Twist test: $1080^{\circ}, 5$ second/rotation	$\pm 1.0 \%$
Dielectric Withstanding Voltage	500 Volts rms for 1W. 1 minute	$\pm 1.0 \%$
High Temperature Exposure	Exposed to an ambient temperature of 275 $+5 /-0^{\circ} \mathrm{C}$ for 250 ± 8 hours,	$\pm 5.0 \%$
Moisture Resistance	MIL-STD-202 Method 106, 7b not applicable	$\pm 2.0 \%$
Low Temperature Storage	Cold chamber at a temperature of -65 $\pm 2^{\circ} \mathrm{C}$ for 24 ± 4 hours	$\pm 2.0 \%$
Vibration, High Frequency	Frequency varied 10 to 2000 Hz , 200G peak, 2 directions 6 hours each	$\pm 1.0 \%$
Load Life	$1000 / 2000$ hours at rated power, $+25^{\circ} \mathrm{C}$, 1.5 hours "On", 0.5 hours "Off"	$\pm 5.0 \%$

ORDERING INFORMATION						
W_{1234}						
	Band	1	2	3	4	5
	Color		Digit		Multiplier	Tolerance
	Black	0	0	0	$\mathrm{x} \quad 1 \Omega$	
	Brown	1	1	1	$x \quad 10 \Omega$	$\pm 1 \%$ (F)
	Red	2	2	2	x 100Ω	$\pm 2 \%$ (G)
	Orange	3	3	3	$x \quad 1 \mathrm{~K} \Omega$	
	Yellow	4	4	4	$x \quad 10 \mathrm{~K} \Omega$	
	Green	5	5	5	x $100 \mathrm{~K} \Omega$	$\pm 0.5 \%$ (D)
	Blue	6	6	6	$x \quad 1 \mathrm{M} \Omega$	$\pm 0.25 \%$ (C)
	Violet	7	7	7	x $10 \mathrm{M} \Omega$	$\pm 0.10 \%$ (B)
	Grey	8	8	8		$\pm 0.05 \%$
	White	9	9	9	$\times 0.001 \Omega$	
	Gold				$\mathrm{x} \quad 0.1 \Omega$	$\pm 5 \%(\mathrm{~J})$
	Silver				x 0.01Ω	$\pm 10 \%$ (K)

FEATURES

- Ultra-low ohmic value series for Current Sensing applications
- Very low inductance (<1nH at 1 MHz Test)
- Miniaturized dimensions, Better power to dimension ratios
- Use of the highest quality standard (96% Alumina) ceramic core
- Manufacturing process-Wire winding/Spot Welding-by Computer Numerical Control (CNC) machine tools to ensure consistency of product quality.
- Encapsulated by epoxy molding compound
- Advanced IC encapsulation mold/die technologies

DERATING

Material

Ceramic Core: CeramTec
Rubalit ${ }^{\circledR}$ 96\% alumina
End Caps: Stainless steel, precision formed
Leads: Copper wire, 100% Sn (Lead Free) coated
CN49W alloy resistance wire TC $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Encapsulation: SUMICON 1100/ 1200 Epoxy molding compound for IC encapsulation

Electrical

Standard Tolerance: F (1.0\%), J (5.0\%)
Temperature Coefficient ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$):
$\pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $\leq 0.03 \Omega$ $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for $\geq 0.033 \Omega$
Maximum Working Voltage: $\sqrt{ }$ PxR

Standard part numbers for WL Series			
Wattage: Series:	$\begin{gathered} 0.5 \\ \text { WLA } \end{gathered}$	WLB	$\stackrel{2.0}{\text { WLC }}$
Ohms			
0.005	WLAROOSFE	WLBROOSFE	
0.015	WLARO1FE	WLRRO1FE	
${ }_{0}^{0.015}$	WLARO15FE	WLERRO15FE	WLCR015FE
0.025	WLARO25FE	WLBRO25FE	WLCR025FE
0.03	WLARO3FE	WLBR03FE	WLCRO3FE
0.05	WLARO5FE	WLBR05FE	WLCR05FE
0.10	WLAR10FE	WLBR10FE	WLCR10FE

Check product availability at www.ohmite.com

To see the latest in resistor technology click on the "What's New" tab at ohmite.com

FEATURES

- WHM, UltraHigh ohmic value precision series,
- WNM, Aryton Perry winding NonInductive available. Inductance $<1 \mathrm{nH}$ at 1 MHZ test,
- Designed to meet the most stringent MIL-R-26F, MIL-STD-202 standard requirements
- Miniaturized Better power to dimension ratios
- Use of the highest quality standard (96% Alumina) ceramic core
- Manufacturing process -Wire winding/ Spot Welding- by Computer Numerical Control (CNC) machine tools to ensure consistency of product quality.
- Encapsulated by epoxy molding compound
- Advanced IC encapsulation mold/die technologies

S P E C IFICATIONS
Material
Ceramic Core: CeramTec
Rubalit ${ }^{\circledR}$ 96\% alumina
End Caps: Stainless steel, precision formed
Leads: Copper wire, 100\% Sn (lead free) coated
ISAOHM alloy resistance wire TC+/-20ppm/ ${ }^{\circ} \mathrm{C}$
Encapsulation: SUMICON 1100/ 1200 Epoxy molding compound for IC encapsulation

Electrical
Standard Tolerance: F (1.0\%), J (5.0\%)
Temperature Coefficient (ppm/ ${ }^{\circ} \mathrm{C}$):
± 90 for 0.100Ω
± 20 for $>0.100 \Omega$
Maximum Working Voltage: (PxR)1/2
Derating: Linearly from
100% @ $+70^{\circ} \mathrm{C}$ to 0% @ $+150^{\circ} \mathrm{C}$.
Operating Temp: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

	Power Rating (watts)	Resistance Range (Ω)	Dim. L $(\mathbf{m m} / \mathbf{i n})$	Dim. D $(\mathbf{m m} / \mathbf{i n})$	Dim. \mathbf{d} $(\mathbf{m m} / \mathbf{i n})$
Type					
WHA	0.5	$0.100-1.0 \mathrm{~K}$	$5.08 / 0.200$	$2.54 / 0.100$	$0.60 / 0.024$
WNA		$0.100-250$			
WHB	1	$0.100-4.0 \mathrm{~K}$	$7.00 / 0.276$	$3.00 / 0.120$	$0.60 / 0.024$
WNB		$0.100-1.0 \mathrm{~K}$			
WHC	2	$0.10-8.0 \mathrm{~K}$	$11.4 / 0.450$	$6.86 / 0.270$	$0.80 / 0.031$
WNC		$0.10-2.0 \mathrm{~K}$			

PERFORMANCE CHARACTERISTICS

Test	Conditions of Test	Performance
Thermal Shock	Rated power applied until thermal stability, $-55^{\circ} \mathrm{C}+0^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}, 15 \mathrm{~min}$.	$\pm 0.2 \%$
Short-time Overload	5 times rated wattage for 5 seconds	$\pm 0.2 \%$
Solderability	Method 208 of MIL-STD-202	$\pm 0.2 \%$
Terminal Strength	Pull test:10 pounds, 5 to10 seconds, Twist test: $1080^{\circ}, 5$ second/rotation	$\pm 0.1 \%$
Dielectric Withstanding Voltage	500 Volts rms for 1W, 2 W 1000 Volts rms. 1 minute	$\pm 0.1 \%$
High Temperature Exposure	Exposed to an ambient temperature of 275 $+5 /-0^{\circ} \mathrm{C}$ for 250 ± 8 hours,	$\pm 0.5 \%$
Moisture Resistance	MIL-STD-202 Method 106, 7b not applicable	$\pm 0.2 \%$
Low Temperature Storage	Cold chamber at a temperature of $-65 \pm 2^{\circ} \mathrm{C}$ for $24+/-4$ hours	$\pm 0.2 \%$
Vibration, High Frequency	Frequency varied 10 to 2000 Hz , 200G peak, 2 directions 6 hours each	$\pm 0.1 \%$
Load Life	$1000 / 2000$ hours at rated power, $+25^{\circ} \mathrm{C}, 1.5$ hours "On", 0.5 hours "Off"	$\pm 0.5 \%$

StANDARD PART NUMBERS FOR WH/WN SERIES						
Wattage: Series:	$\stackrel{0.5}{\text { WHA }}$	$\begin{aligned} & 0.5 \\ & \text { WNA } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { WHB } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { WNB } \end{aligned}$	$\stackrel{2.0}{W} \underset{W}{ }$	$\begin{gathered} 2.0 \\ \text { WNC } \end{gathered}$
Ohms						
$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.50 \\ & 0.55 \end{aligned}$	WHAR10FE	WNAR10FE	WHBR10FE	WNBR10FE	WHCR10FE	W
	WHAR25FE	WNAR25FE	WHBR25FE	WNBR25FE	WHCR25FE	WNCR25FE
	WHAR50FE	WNAR50FE	WHBR50FE	WNBR5OFE	WHCR50FE	WNCR50FE
	WHAR75FE	WNAR75FE	WHBR75FE	WNBR75FE	WHCR75FE	WNCR75FE
1 V	WHA1ROFE	WNATROFE	WHB1ROFE	WNB1ROFE	WHC1ROFE	WNC1ROFE
2 V	WHA2ROFE	WNA2ROFE	WHB2ROFE	WNB2ROFE	WHC2ROFE	WNC2ROFE
4 V	WHA4ROFE	WNAAROFE	WHB4ROFE	WNB4ROFE	WHC4ROFE	WNC4ROFE
5 V	WHA5ROFE	WNA5ROFE	WHB5ROFE	WNB5ROFE	WHC5ROFE	WNC5ROFE
	WHA10RFE	WNA10RFE	WHB10RFE	WNB10RFE	WHCIORFE	WNC10RFE
15	WHA15RFE	WNA15RFE	WHB15RFE	WNB15RFE	WHC15RFE	WNC15RFE
25	WHA25RFE	WNA25RFE	WHB25RFE	WNB25RFE	WHC25RFE	WNC25RFE
	WHA51RFE	WNA51RFE	WHB51RFE	WNB51RFE	WHC51RFE	WNC51RFE
75	WHAT5RFE	WNA75RFE	WHB75RFE	WNB75RFE	WHC75RFE	WNC75RFE
100	WHA100FE	WNA100FE	WHB100FE	WNB100FE	WHC100FE	WNC100FE
150	WHA150FE	WNA150FE	WHB150FE	WNB150FE	WHC150FE	WNC150FE
200	WHAZOOFE	WNA200FE	WHB200FE	WNB200FE	WHC200FE	WNC200FE
	WHA250FE	WNA250FE	WHB250FE	WNB250FE	WHC250FE	WNC250FE
330	WHA330FE		WHB330FE	WNB330FE	WHC330FE	WNC330FE
470	WHA470FE		WHB470FE	WNB470FE	WHC470FE	WNC470FE
560	WHA560FE		WHB560FE	WNB560FE	WHC560FE	WNC560FE
$\begin{aligned} & \hline 750 \\ & 1 \mathrm{~K} \\ & 2.5 \mathrm{~K} \end{aligned}$	WHAT50FE		WHB750FE	WNB750FE	WHC750FE	WNC750FE
	WHATKOFE		WHB1KOFE	WNB1KOFE	WHCTKOFE	WNC1KOFE
			WHB2K5FE		WHC2K5FE	

Wire Element Four Terminal Precision Current Sense

TES T D A TA		
Load Life	(1,000 hours at rated power at $\left.70^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{R} 0.2 \%$ max.
Moisture Resistance	(Mil-Std-202, Method 106, Cond. A)	$\Delta \mathrm{R} \mathrm{0.2} \mathrm{\%}$ max.
Thermal Shock	(Mil-Std-202, Method 107)	$\Delta \mathrm{R} 0.2 \%$ max.

STANDARD PART NUMBERS FOR GS3 SERIES

Series Tolerance	$\begin{gathered} \text { CS3F } \\ \text { 1\% } \end{gathered}$	Series Tolerance	$\begin{gathered} \text { CS3F } \\ \text { 1\% } \end{gathered}$
Ohms		Ohms	
0.001	CS3FR001E	0.015	CS3FR015E
0.002	CS3FR002E	0.02	CS3FR020E
0.003	CS3FR003E	0.025	CS3FR025E
0.005	CS3FR005E	0.03	CS3FR030E
0.01	CS3FR010E	0.036	CS3FR036E
		0.05	CS3FR050E

Check product availability at WWW.ohmite.com

The CS3 Series utilizes state of the art technology to achieve highly reliable noninductive performance. The CS3 is ideal for current monitoring and control applications.

F E A T URES

- Values beginning at 1 miliohm
- Non Inductive Design
- Four terminal Kelvin connection

I NTERNAL CIRCUIT

Material

Terminal Material: Kelvin
Terminals; 97\% Sn / 3\% Ag solder over copper
Encapsulation: Polyester over resistance element

Electrical

Standard Resistance Values:
$1 \mathrm{~m} \Omega-50 \mathrm{~m} \Omega$
Resistance Tolerances: 1\%, 2\%, 5\%
Temperature Coefficient: TC referenced to $25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $-15^{\circ} \mathrm{C}$ and $+105^{\circ} \mathrm{C}, 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Power Rating: 3 W at $70^{\circ} \mathrm{C}$ max. 40Amp permanent
Operating Temp.: $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temp.: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

DERATING

ORDERING INFORMATION

Subscribe to our
 New Product Bulletin at ohmite.com

FEATURES

- Ideal for current sensing applications
- 1% Tolerance standard, others available
- Fixed resistance measuring point "M"
- Low inductance (non-inductive below 0.25Ω)
- RoHS compliant product available; add "E" suffix to part number to specify

FEATURES

- Ideal for current sensing applications
- 1% Tolerance standard, others available
- Low Inductance (non-inductive below 0.25Ω)
- Tinned Copper Leads
- RoHS Compliant

SPECIFICATIONS

Material

Terminals: Tinned Copper Leads
Encapsulation: Silicone Molding Compound

Derating

Linearly from 100% at $+25^{\circ} \mathrm{C}$ to 0% at $+200^{\circ} \mathrm{C}$

SPECIFICATIONS
Material
Terminals: Solder-plated copper terminals or copper clad steel depending on ohmic value.
Encapsulation: Silicone molding compound.

Derating

Linearly from 100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+275^{\circ} \mathrm{C}$.
Electrical
Tolerance: $\pm 1 \%$ standard. Others available.
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating.
Overload: 5 times rated wattage for 5 seconds.
Dielectric withstanding voltage: 1000 VRMS for 3 and 5 watt; 500 VRMS for 2 watt.
Insulation resistance: Not less than $1000 \mathrm{M} \Omega$.
Thermal EMF:
Less than $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Temperature range: $-55^{\circ} \mathrm{C}$ to $275^{\circ} \mathrm{C}$.

Electrical

Resistance Range: 0.005Ω to 0.100Ω standard
Standard Tolerance: $\pm 1 \%$; others available
Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Temperature Coefficient of Resistance, $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$: $\geq 0.015 \Omega$: $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ $<0.015 \Omega: \pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Environmental Performance: Exceeds the requirements of MIL-PRF-49465
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating.
Overload: 5 times rated wattage for 5 seconds
Dialectric withstanding voltage: 1500 VAC for 4.5 and 7 watt 1000 VAC for 3 watt
Insulation resistance: Not less than $1000 \mathrm{M} \Omega$
Thermal EMF: Less than $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Two Terminal Axial

Series	Wattage	Dimensions (in. / mm)				
		Ohms	Length	Diam.	"M"	Lead ga.
12	2	0.005-0.10	0.416 / 10.6	0.094 / 2.4	1.156 / 29.4	20
13	3	0.005-0.20	$0.570 / 14.5$	$0.205 / 5.2$	1.310 / 33.3	20
15	5	0.005-0.25	0.935 / 23.8	$0.330 / 8.4$	1.675 / 42.5	18

Four Terminal Axial

			Dimensions (in. / mm)					
Series Wattage	Ohms	Length	Diam.	A	B			
13	3	$0.005-0.1$	$0.625 / 15.9$	$0.200 / 5.08$	$1.25 / 31.8$	$0.125 / 3.18$		
14	4.5	$0.005-0.1$	$1.060 / 26.9$	$0.335 / 8.51$	$1.50 / 38.1$	$0.200 / 5.08$		
17	7	$0.005-0.1$	$1.500 / 38.1$	$0.375 / 9.53$	$1.50 / 38.1$	$0.200 / 5.08$		

Ohmite's Four-terminal Current-sense Resistors are specifically designed for low-resistance applications requiring the highest accuracy and temperature stability. This four-terminal version of Ohmite's 10 Series resistor is specially designed for use in a Kelvin configuration, in which a current is applied through two opposite terminals and sensing voltage is measured across the other two terminals

The Kelvin configuration enables the resistance and temperature coefficient of the terminals to be effectively eliminated. The four terminal design also results in a lower temperature coefficient of resistance and lower self-heating drift which may be experienced on two-terminal resistors. The requirement to connect to the terminals at precise test points is eliminated, allowing for tighter tolerancing on the end application.

StANDARD PART NUMBERS FOR 10 SERIES						
Ohmic value	2 watt	$\begin{aligned} & 2 \text { Terminal } \\ & 3 \text { watt } \end{aligned}$	5 watt	3 watt	4 Terminal 4.5 watt	7 watt
0.005	12FR005	13 FR005	15FR005	13FPR005E	14FPR005E	17FPR005E
0.010	12 FR010	13 FR010	15 FR010	13FPR010E	14FPR010E	17FPR010E
0.015	12FR015	13 FR015	15FR015	13FPR015E	14FPR015E	17FPR015E
0.020	12 FR020	13 FR020	15 FR020	13FPR020E	14FPRO20E	17FPRO20E
0.025	12FR025	13FR025	15FR025	13FPR025E	14FPR025E	17FPR025E
0.030	12 FR 030	13 FR030	15 FR030	13FPRO30E	14FPRO30E	17FPRO30E
0.040	12 FR040	13 FR040	15 FR040	13FPR040E	14FPR040E	17FPR040E
0.050	12 FR050	13 FR050	15 FR050	13FPR050E	14FPR050E	17FPR050E
0.060	12FR060	13 FR060	15FR060	13FPR060E	14FPR060E	17FPR060E
0.070	12 FR070	13 FR070	15 FR070	13FPR070E	14FPR070E	17FPR070E
0.075				13FPR075E	14FPR075E	17FPR075E
0.080	12 FR080	13 FR080	15 FR080	13FPR080E	14FPR080E	17FPR080E
0.090	12 FR090	13 FR090	15 FR090	13FPR090E	14FPR090E	17FPR090E
0.100	12FR100	13 FR100	15FR100	13FPR100E	14FPR100E	17FPR100E
0.150		13 FR150	15FR150			
0.200		13 FR200	15FR200			
0.250			15 FR 250			

ORDERING INFORMATION
Wattage $\rceil \quad\left[\begin{array}{l}\text { Terminals } \\ \text { Blank }=2 \text { terminals } \\ \mathrm{P} \quad=4 \text { terminals }\end{array} \quad\right.$ RoHS Compliant
$13 \mathrm{FPR} \mathbf{1} 50 \mathrm{E}$
10 Series $\begin{array}{lll}\text { Tolerance } & \text { Ohm Value } \\ & \mathrm{F}=1 \% & \text { Example: }\end{array}$ $\begin{array}{ll}F=1 \% & \text { Example: } \\ D=0.5 \% & R 050=0.05 \Omega\end{array}$
Check product availability at www. ohmite.com

Two Terminal Metal Element Current Sense

tGr as a function of resistance

ORDERING INFORMATION

Our friendly Customer Service team can be reached at $\mathbf{8 6 6} 6-9-0 \mathrm{HMITE}$

These non-inductive, 3-piece welded element resistors offer a reliable low-cost alternative to conventional current sense products. With resistance values as low as 0.005Ω, and wattages from $0.1 w$ to $3 w$, the 60 Series offers a wide variety of design choices.
FEATURES

- Low inductance
- Low cost
- Wirewound performance
- Flameproof

Special Leadform Units Available

SPECIFICATIONS

Material

Resistor: Nichrome resistive element
Terminals: Copper clad steel or copper depending on style

Derating

Linearly from 100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+275^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 3 \%$ standard, others available.
Power rating: Based on $25^{\circ} \mathrm{C}$ ambient.
Overload: 5x rated power for 5 seconds.
Inductance: <10nh
To calculate max amps: use the formula $\sqrt{P / R}$.

PARTIAL LISTING OF AVAILABLE VALUES							
(Contact Ohmite for others)							
Part Number	Watts	Ohms	Tolerance	A (ref.)	$\begin{aligned} & \text { Dimensions } \\ & \text { B (max.) } \end{aligned}$	C (± 0.010)	Lead Ga.
600HR050E	0.1	0.05	3\%	2.440	0.155	0.655	24
600HR033E	0.1	0.033	3\%	2.440	0.155	0.655	24
600HR036E	0.1	0.036	3\%	2.440	0.155	0.655	24
601HR027E	0.125	0.027	3\%	2.440	0.155	0.655	24
601HR030E	0.125	0.03	3\%	2.440	0.155	0.655	24
601HR025E	0.125	0.025	3\%	2.440	0.155	0.655	24
602HR050E	0.2	0.05	3\%	3.530	0.250	0.559	22
603HR005E	0.25	0.005	3\%	2.440	0.155	0.655	24
603HR010E	0.25	0.01	3\%	2.440	0.155	0.655	24
603HR015E	0.25	0.015	3\%	2.440	0.155	0.655	24
603HR050E	0.25	0.05	3\%	3.685	0.330	1.310	20
604HR010E	0.375	0.01	3\%	3.530	0.250	0.559	22
604HR020E	0.375	0.02	3\%	3.530	0.250	0.559	22
604HR025E	0.375	0.025	3\%	3.530	0.250	0.559	22
604HR100E	0.375	0.01	3\%	3.587	0.65	1.125	20
605HR010E	0.5	0.01	3\%	3.685	0.355	1.310	20
605HR020E	0.5	0.02	3\%	3.685	0.330	1.310	20
605HR030E	0.5	0.03	3\%	3.685	0.330	1.310	20
605HR100E	0.5	0.1	3\%	3.981	0.750	1.675	18
607HR050E	0.75	0.05	3\%	3.587	0.630	1.106	20
607HR005E	0.75	0.005	3\%	3.674	0.320	1.310	20
610HR005E	1	0.005	3\%	3.587	0.650	1.125	20
610HR010E	1	0.01	3\%	3.587	0.630	1.106	20
610HR020E	1	0.02	3\%	3.587	0.630	1.106	20
610HR030E	1	0.03	3\%	3.587	0.650	1.106	20
610HR050E	1	0.05	3\%	3.981	0.750	1.675	18
615HR010E	1.5	0.01	3\%	3.981	0.750	1.675	18
615HR020E	1.5	0.02	3\%	3.981	0.750	1.675	18
615HR030E	1.5	0.03	3\%	3.981	0.750	1.675	18
620HR005E	2	0.005	3\%	3.981	0.750	1.675	18
630HR010E	3	0.01	3\%	4.125	0.781	1.68*	18
630HR015E	3	0.015	3\%	4.125	1.11	2	18
630HR025E	3	0.025	3\%	4.125	1.279	2.125	18
630HR050E	3	0.05	3\%	4.125	1.664	2.375	18

*Reference dimensions; contact Ohmite for details
Check product availability at WWW.ohmite.com

Ohmite's Four Terminal Bare Element Resistors provide ultra low resistance values (to 0.0005Ω) for relatively high current requirements, with the advantages of a Kelvin configuration and PC Board mounting capability.

These shunt resistors are specifically designed for low resistance applications requiring the highest accuracy and temperature stability. This Four Terminal version of Ohmite's 60 Series Resistor is specially designed for use in a Kelvin configuration, in which a current is applied through two opposite terminals and sensing voltage is measured across the other two terminals.

The Kelvin configuration enables the resistance and temperature coefficient of the terminals to be effectively eliminated. The four terminal design also results in a lower Temperature Coefficient of Resistance and lower self heating drift which may be experienced on two terminal resistors. The requirement to connect to the terminals at precise test points is eliminated, allowing for tighter tolerancing on the end application.

FEATURES

- Ideal for current sensing applications
- 1% tolerance standard, others available
- Low inductance (non-inductive below 0.05Ω)
- RoHS compliant
- Radial, self-supporting, design is ideal for PC board mounting
- High Power-to-size ratio
- Decimal marked, silicone coated (650 Series only)

SPECIFICATIONS

Material

Terminals: Tinned Copper
Resistive element: Manganin Alloy

Electrical
Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+275^{\circ} \mathrm{C}$.
Temperature Coefficient of Resistance, $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$: $\pm 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, .015 \Omega$ and higher $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}, .015 \Omega$ and lower
Environmental Performance: Exceeds the requirements of MIL-PRF-49465
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating
Overload: 5 times rated wattage for 5 seconds
Thermal EMF: Less than $\pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Derating: Linearly from 100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $275^{\circ} \mathrm{C}$

STD. PART NUMBERS		
Ohmic value	610 Series 1 watt	650 Series 5 watt
0.002	610FPR002E	650FPR002E
0.005	610FPR005E	650FPR005E
0.010	610 PPR010E	-
0.015	610 PPR015E	-
0.020	610FPR020E	-
0.025	610 FPR 025 E	-
0.036	610 PPR036E	-
0.050	610FPR050E	-

Our Tech Center is open 10am to 2 pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

20 Series

Vitreous Enamel Conformal Axial Terminal Wirewound, 5\% Tolerance Standard

Series	Wattage		Dimensions (in. / mm)		Max.	
		Ohms	Length*	Diam.*	Volt.**	Lead ga.
21	1	1.0-3.0K	0.406/10.3	$0.156 / 4.0$	75	24
22	2	1.0-3.0K	0.406/10.3	0.219 / 5.6	65	20
23	3	0.1-10K	0.500/12.7	0.220 / 5.6	135	20
25	5	0.1-28K	1.000/25.4	$0.276 / 7.0$	330	20
27	7	0.1-25K	$1.250 / 31.8$	$0.394 / 10.0$	450	20
20	10	0.1-100K	1.844 / 46.8	$0.394 / 10.0$	720	20
12.5 watt size available on special order						
*For units below 1Ω, add 15% to body diameter, 10% to body length. **Maximum Voltage is based on Ohm's Law $\left[\mathrm{V}=\sqrt{\mathrm{P}^{*} \mathrm{R}}\right]$ as limited by the resistance value of specified product						

The 20 Series axial terminal resistors are both durable and economical. They have all the electrical attributes of the more expensive 90 Series resistors, including all-welded construction. They offer the durability of a lead free conformal vitreous enamel coating and are ideal for computer, communications and industrial applications in which cost, quality, and reliability are key considerations.

FEATURES

- Rugged vitreous enamel coating withstands high humidity and temperature cycling.
- Durable construction, recommended for industrial applications where reliability is paramount.
- All-welded construction.
- Flame resistant lead free vitreous enamel coating.
- RoHS compliant; Add "E" suffix to part number to specify.

SPECIFICATIONS

Material

Coating: Conformal lead free vitreous enamel.

Terminals: Solder-coated axial

Derating

Linearly from
100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+350^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 5 \%$ standard. Other tolerances available.
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating (other wattages available).

Overload:

Under 7 watts: 5 times rated wattage for 5 seconds. 7 watts and over: 10 times rated wattage for 5 seconds.
Temperature coefficient:
1 to 9.99 ohms: $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10 ohms and over: $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Core: Ceramic.

ORDERING INFORMATION		
RoHS Compliant Check product availability at www.ohmite.com		

Standard Part NUMbers for 20 SERIES

$\begin{aligned} & \text { Oٍ } \\ & \text { N } \\ & \text { O} \\ & \text { E } \end{aligned}$	Part №. Prefix $>$ Suffix \boldsymbol{V}			$\begin{aligned} & \text { Wa } \\ & \infty \\ & \text { Nె } \end{aligned}$	tage \sim 룸				Part No. Prefix $>$ Suffix \mathbf{V}	$\underset{\sim}{\lambda}$	~ నె	$\begin{aligned} & \text { WatI } \\ & \text { N } \\ & \text { ल్ } \end{aligned}$	ttage \sim ్N	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { 으 } \\ & \text { 금 } \end{aligned}$		Part No. Prefix $>$ Suffix V	$\stackrel{-}{-}$	N ె	Wat ๓ ल	age ค 루	$\stackrel{\sim}{N}$	을
0.10	-R10			\checkmark	\checkmark		\checkmark	62	62R	*	*	\checkmark	\checkmark	*	\checkmark	1,800	-1K8	\checkmark	\checkmark	\checkmark	*	*	*
0.13	-R13			\checkmark	\checkmark		\checkmark	68	68R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	2,000	2K0	*	\checkmark	\checkmark	\checkmark	*	\checkmark
0.15	-R15			\checkmark	\checkmark		\checkmark	75	-75R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	2,200	2K2	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark
0.20	-R20			\checkmark	\checkmark		\checkmark	82	-82R	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{ }{*}$	\checkmark	2,500	-2K5	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark
0.25	-R25			\checkmark	\checkmark		\checkmark	100	-100	\checkmark	*	\checkmark	\checkmark	\checkmark	\checkmark	2,700	2K7	\checkmark	\checkmark	\checkmark	*	*	\checkmark
0.30	-R30			\checkmark	\checkmark		\checkmark	120	-120	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{ }{*}$	\checkmark	3,000	3K0	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark
0.33	-R33			\checkmark	\checkmark		\checkmark	125	- 125	$\stackrel{+}{*}$	*	\checkmark	\checkmark	\checkmark	\checkmark	3,300	- 3К3			\checkmark	\checkmark	*	*
0.50	-R50			\checkmark	\checkmark		\checkmark	150	-150	\checkmark	\checkmark	\checkmark	\checkmark	*	v	3,500	- 3 K 5			*	\checkmark	*	*
0.75	-R75			\checkmark	\checkmark		\checkmark	180	- 180	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{+}{*}$	\checkmark	3,900	-3K9			\checkmark	\checkmark	*	\checkmark
1	-1R0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	200	200	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4,000	4K0			\checkmark	\checkmark	$\stackrel{ }{ }$	\checkmark
1.5	-1R5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	220	-220	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{ }{*}$	\checkmark	4,500	-4K5			*	\checkmark	*	*
2	-2R0	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	225	-225	*	*	*	*	*	*	4,700	- 4 K 7			\checkmark	\checkmark	*	\checkmark
2.2	-2R2	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	250	- 250	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{ }{*}$	\checkmark	5,000	-5K0			\checkmark	\checkmark	\checkmark	\checkmark
3	-3R0	\checkmark	\checkmark	\checkmark	v	\checkmark	\checkmark	270	- 270	\checkmark	v	\checkmark	v	*	$\stackrel{ }{*}$	6,000	6K0			\checkmark	\checkmark	\checkmark	\checkmark
4	4R0	\checkmark	$\stackrel{+}{ }$	\checkmark	\checkmark	*	\checkmark	300	300	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{+}{*}$	\checkmark	6,800	6K8			\checkmark	\checkmark	$\stackrel{+}{ }$	*
5	5R0	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	330	330	\checkmark	\checkmark	\checkmark	\checkmark	*	v	7,000	-7K0			\checkmark	\checkmark	*	*
7.5	-7R5	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	350	-350	*	\checkmark	*	\checkmark	*	\checkmark	7,500	-7K5			\checkmark	\checkmark	*	\checkmark
10	-10R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	390	- 390	\checkmark	*	\checkmark	*	$\stackrel{ }{*}$	*	8,000	-8K0			\checkmark	\checkmark	*	\checkmark
12	-12R	*	*	\checkmark	\checkmark	*	\checkmark	400	- 400	*	*	\checkmark	\checkmark	*	\checkmark	9,000	-9K0			\checkmark	*	*	*
15	-15R	\checkmark	*	\checkmark	*	\checkmark	\checkmark	450	450	*	*	$\stackrel{+}{*}$	\checkmark	*	\checkmark	10,000	-10K			\checkmark	\checkmark	+	\checkmark
18	-18R	\checkmark	*	\checkmark	\checkmark	*	\checkmark	470	-470	\checkmark	\checkmark	\checkmark	\checkmark	*	v	12,000	-12K				\checkmark	*	\checkmark
20	20R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	500	- 500	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	13,000	-13K					*	\checkmark
22	-22R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	560	- 560	\checkmark	\checkmark	\checkmark	\checkmark	*	*	15,000	-15K				\checkmark	*	\checkmark
25	-25R	*	\checkmark	\checkmark	\checkmark	*	\checkmark	600	- 600	\checkmark	\checkmark	\checkmark	\checkmark	$\stackrel{+}{*}$	\checkmark	17,000	-17K					*	*
27	27R	\checkmark	\checkmark	\checkmark	\checkmark	*	*	680	-680	\checkmark	*	\checkmark	\checkmark	*	\checkmark	20,000	20K				\checkmark	\checkmark	\checkmark
30	30R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	750	-750	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	22,000	22K				\checkmark	*	*
33	-33R	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	800	-800	\checkmark	*	\checkmark	\checkmark	*	*	25,000	-25K				\checkmark	*	\checkmark
35	-35R	*	*	*	\checkmark	*	*	820	-820	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	30,000	-30k						\checkmark
39	39R	\checkmark	\checkmark	\checkmark	*	*	\checkmark	900	-900	*	\checkmark	\checkmark	\checkmark	*	*	33,000	-33K						*
40	40R	\checkmark	*	\checkmark	\checkmark	*	\checkmark	1,000	-1K0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	35,000	35K						*
47	-47R	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	1,100	-1K1	*	*	\checkmark	\checkmark	*	\checkmark	40,000	40K						\checkmark
50	50R	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1,200	-1K2	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	50,000	50k						\checkmark
56	56R	*	\checkmark	\checkmark	\checkmark	*	*	1,500	-1K5	\checkmark	\checkmark	\checkmark	Shaded values involve very fine resistance wire and should not be used in critical applications without burn-in and/or thermal cycling.										
$\begin{aligned} & \boldsymbol{\nu}\end{aligned}=$ Sta	andard va	ves	es su	ject	to min	imum	hand	charge	per item														

- Economical
- Applications include commercial, industrial and communications equipment
- Stability under high temperature conditions
- All-welded construction
- RoHS compliant; add "E" suffix to part number to specify.

SPECIFICATIONS
Material
Coating: Conformal siliconeceramic.
Core: Ceramic.
Terminals: Solder-coated copper clad axial.

Derating
 Linearly from
 100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+275^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 5 \%$ (J type), $\pm 1 \%$ (F type) (other tolerances available).
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating (other wattages

available).

Overload: Under 5 watts: 5 times rated wattage for 5 seconds. 5 watts and over: 10 times rated wattage for 5 seconds.
Temperature coefficient:
Under $1 \Omega: \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 1Ω to 9.99Ω : $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω and over: $\pm 20 \mathrm{ppm} /$

Axial Term. Wirewound, 1\% and 5\% Tol. Std.

Series	Wattage	Dimensions (in. / mm)				Lead ga.
		Ohms	Length	Diam.	Voltage	
41	1.0	0.10-6K	0.437 / 11.1	0.125/ 3.2	150	24
42	2.0	0.10-8K	$0.406 / 10.3$	0.219/ 5.6	100	20
43	3.0	0.10-20K	0.593 / 15.1	0.218/ 5.5	200	20
45	5.0	0.10-70K	$0.937 / 23.8$	$0.343 / 8.7$	460	18
47	7.0	0.10-80K	1.280 / 32.5	0.343/8.7	670	18
40	10.0	0.10-150K	1.642 / 41.7	$0.406 / 10.3$	1000	18

Non-Inductive versions available. Insert " N " before tolerance code. Example: 42NJ27R
Ohmite 40 Series resistors are the most economical conformal silicone-ceramic coated resistors offered. These all-welded units are characterized by their low temperature coefficients and resistance to thermal shock, making them ideal for a wide range of electrical and electronic applications.

Units with 1% and 5\% tolerances are identical in construction and electrical specifications. Durable but economical 40 Series resistors exceed industry requirements for quality.

80 Series

Commercial Grade Acrasil ${ }^{\oplus}$ ，Silicone－Ceramic Conformal Axial Terminal Wirewound 1\％Tol．（5\％avail．）

RW Series

Military Grade 80 Series MIL－R－26 Qualified

Comm． Grade	Military Grade	Watts	Ohms	Dimensions（in．／mm）		Voltage	Lead ga．
				Length	Diam．		
81F	RW70U	1	0．1－6K	$0.437 / 11.1$	0．125／ 3.2	150	24
82		2	0．1－8K	$0.406 / 10.3$	0．219／ 5.6	100	20
$\begin{aligned} & 83 \mathrm{~F} \\ & \text { 83J } \end{aligned}$	RW79U RW69V	3	0．1－20K	$0.593 / 15.1$	0．218／ 5.5	200	20
$\begin{aligned} & 85 \mathrm{~F} \\ & 85 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { RW74U } \\ & \text { RW67V } \end{aligned}$	5	0．1－75K	$0.937 / 23.8$	$0.343 / 8.7$	460	18
$\begin{aligned} & 80 \mathrm{~F} \\ & 80 \mathrm{~J} \end{aligned}$	RW78U RW68V	10	0．1－150K	1.842 ／ 46.8	$0.406 / 10.3$	1000	18

Non－Inductive versions available．Insert＂N＂before tolerance code．Example：83NF2K21

FEATURES
－Designed for precision power applications
－All－welded construction
－RW Series＂Mil＂value resistors marked with＂Mil＂in accordance with MIL－R－26 specifications

SPECIFICATIONS

Material

Coating：Silicone－ceramic．
Core：Ceramic．
Terminals：Solder－coated copper clad axial．
Derating：Linearly from 100%＠$+25^{\circ} \mathrm{C}$ to 0%＠$+275^{\circ} \mathrm{C}$ ．

Electrical
Tolerance：$\pm 5 \%$（J type）， $\pm 1 \%$（F type） （other tolerances available）．
Power rating：Based on $25^{\circ} \mathrm{C}$ free air rating．

Maximum ohmic values：

 See chart．Overload：Under 5 watts： 5 times rated wattage for 5 seconds． 5 watts and over： 10 times rated wattage for 5 seconds．
Temperature coefficient： Under 1 1Ω ：$\pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 1 to 9.99Ω ：$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω and over：$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dielectric withstanding voltage： 500 VAC： 1 watt rating 1000 VAC：2，3，5， 7 and

10 watt rating
This product will not be made avail－ able as RoHS Compliant．

For RoHS Compliant equiva－ lent，see 40 Series．

Ohmite＇s highest quality conformal axial terminal silicone－ceram－ ic coated resistors for applications requiring high precision and stability．These resistors have a low temperature coefficient and maintain a high degree of stability under demanding conditions．

ORDERING INFORMATION

Commercial Grade Non－Inductive Winding Non－Inductive Winding
Optional（blank＝std．winding）

	81 NJR10		
80 Series	Wattage	Tolerance	Resistance Value
Acrasil ${ }^{\text {® }}$	1 ＝ 1 W	F＝1\％	$\mathrm{R} 10=0.10 \Omega$
Silicone Ceramic	2	$J=5 \%$	$1 \mathrm{RO}=1.0 \Omega$
Conformal Axial	3		$10 \mathrm{R}=10.0 \Omega$
Term．Wirewound	5		$250=250 \Omega$
	$0=10 \mathrm{~W}$		$1 \mathrm{KO}=1,000 \Omega$
			$4 \mathrm{~K} 5=4,500 \Omega$
Military Grade			$50 \mathrm{~K}=50,000 \Omega$

RW74U1001F RW Series
Military grade

Resistance Value Tolerance $\begin{array}{ll}\text { Resistance Vaiue } & \mathrm{F}=1 \% \\ \text { R100 }=0.1 \Omega & \mathrm{~J}=5 \%\end{array}$ 1 R00 $=1.0 \Omega$ $10 R 0=10.0 \Omega$ $1000=100 \Omega \quad 1002=10 \mathrm{~K} \Omega$ $1001=1000 \Omega \quad 1503=150 \mathrm{~K} \Omega$
commercial grade part numbers

COMMERCIAL GRADE PART NUMBERS														
	Part No． Prefix＞ Suffix \boldsymbol{V}	Wattage		Part No． Prefix＞ Suffix $>$	Wattage	$\begin{aligned} & \text { OU } \\ & \text { N } \\ & \text { OU } \\ & \text { E } \end{aligned}$	Part No． Prefix＞ Suffix \boldsymbol{V}	Wattage －\quad is 으 宸 岗 落 嵩	$\begin{aligned} & \text { dy } \\ & \text { N } \\ & \text { I. } \\ & \text { I } \end{aligned}$	Part No． Prefix＞ Suffix \mathbf{V}	Wattage －\quad i 으 $\frac{山}{\infty} \underset{\infty}{\stackrel{1}{5}} \text { 落 }$	$\begin{aligned} & \text { OU } \\ & \text { N } \\ & \text { N } \\ & \text { 응 } \end{aligned}$	Part No． Prefix $>$ Suffix $>$	Wattage n 으 落
0.1	R10	レレレレ	2.21	2R21	$\checkmark \downarrow \downarrow$	51.1	51R1	$\checkmark \checkmark \checkmark$	1，210	1K21	$\checkmark \downarrow \downarrow \downarrow$	27，400	27K4	$\checkmark \checkmark$
0.11	R11	$\checkmark \checkmark \checkmark$	2.49	2R49	$\checkmark レ \checkmark \checkmark$	56.2	56R2	$\checkmark \checkmark \checkmark$	1，330	－1K33	$* v *$	30，100	30K1	$\checkmark \checkmark$
0.121	R121	$\checkmark \checkmark \checkmark \downarrow$	2.74	2R74	$\checkmark \checkmark \checkmark$	61.9	$61 \mathrm{R9}$	$\checkmark \checkmark \checkmark$	1，500	1K5	$\checkmark \checkmark \checkmark *$	33，200	33K2	$\checkmark \checkmark$
0.133	R133	$\checkmark * \checkmark$	3.01	3R01	$\checkmark \checkmark \checkmark \checkmark$	68.1	68R1	$\checkmark \checkmark \checkmark \checkmark$	1，620	1K62	$\checkmark * *$	37，400	37K4	$\pm+$
0.15	R15	$\checkmark \checkmark \checkmark \checkmark$	3.32	3R32	$\checkmark \checkmark \checkmark$	75	75R	$v * v$	1，820	1K82	$\checkmark \checkmark \checkmark \checkmark$	38，300	38K3	$\checkmark *$
0.162	R162	$\div * V$	3.74	3R74	$\checkmark \checkmark \checkmark$	82.5	82R5	$\checkmark \checkmark \checkmark \checkmark$	2，000	2K0	$\checkmark \checkmark \checkmark \checkmark$	40，200	40K2	$\checkmark \checkmark$
0.182	－R182	$\checkmark \checkmark \checkmark \checkmark$	4.02	4R02	$\checkmark \checkmark \checkmark \checkmark$	90.9	90R9	$\checkmark \checkmark \checkmark$	2，210	2K21	$\checkmark \checkmark \checkmark$	45，300	45K3	$\checkmark \checkmark$
0.2	R20	$\checkmark \checkmark \checkmark \checkmark$	4.53	4R53	$\checkmark \checkmark \checkmark$	100	－ 100	$\checkmark \checkmark \checkmark \downarrow$	2，490	2K49	$\checkmark \checkmark \checkmark \downarrow$	49，900	49K9	$\checkmark \checkmark$
0.221	R221	$\checkmark \checkmark \checkmark$	4.99	4R99	$\checkmark \checkmark \checkmark \checkmark$	110	110	$\checkmark \checkmark \checkmark$	2，740	2K74	$\checkmark \checkmark \checkmark$	51，100	51K1	$\checkmark \checkmark$
0.249	R249	$\checkmark \checkmark \checkmark \checkmark$	5.11	5R11	$\checkmark \checkmark \checkmark$	121	－121	$\checkmark \checkmark \checkmark \checkmark$	3，010	3K01	$\checkmark \checkmark \checkmark \checkmark$	56，200	56K2	$\checkmark \checkmark$
0.274	R274	$\checkmark \checkmark \checkmark$	5.62	5R62	$\checkmark \checkmark \checkmark \checkmark$	133	133	$\div v *$	3，320	3K32	$\checkmark \checkmark \checkmark$	61，900	61K9	$\checkmark *$
0.301	R301	$\checkmark \checkmark \checkmark \checkmark$	6.19	6R19	$\checkmark \checkmark \checkmark$	150	150	$\checkmark \checkmark \checkmark *$	3，740	3K74	$\checkmark \checkmark \checkmark$	68，100	68 K 1	$\checkmark \checkmark$
0.332	R332	$\checkmark * \checkmark$	6.81	6R81	$\checkmark \checkmark \checkmark \checkmark$	162	162	$\checkmark \vee \checkmark$	4，020	4K02	$\checkmark \checkmark \checkmark$	75，000	75 K	$\checkmark \checkmark$
0.374	R374	$\checkmark * \nu$	7.5	7 R 5	$\checkmark \checkmark \checkmark$	182	－182	$\checkmark \checkmark \checkmark \checkmark$	4，530	4K53	$\checkmark * \nu$	82，500	82K5	\checkmark
0.392	R392	$\checkmark \checkmark \checkmark$	8.25	8R25	$\checkmark \checkmark * \nu$	200	200	$\checkmark \checkmark \checkmark \checkmark$	4，990	4K99	$\checkmark \checkmark \checkmark$	90，900	90K9	\checkmark
0.402	R402	$\checkmark \checkmark \checkmark \checkmark$	9.09	9R09	$\checkmark \checkmark \checkmark$	221	221	$\checkmark \checkmark \checkmark$	5，110	5K11	$\checkmark \checkmark \checkmark$	100，000	100K	\checkmark
0.453	R453	$\checkmark \checkmark \checkmark$	10	10R	$\checkmark \checkmark \checkmark \downarrow$	249	249	$\checkmark \checkmark \checkmark \downarrow$	5，620	5K62	$\checkmark \checkmark \checkmark$	150，000	150K	\checkmark
0.499	R499	$\checkmark \checkmark \checkmark \checkmark$	11	－11R	$\checkmark \checkmark \checkmark$	274	274	$\checkmark * \nu$	6，190	6K19	$\checkmark \checkmark \checkmark$	200，000	200K	\checkmark
0.511	R511	$\checkmark * *$	12.1	－12R1	$\checkmark \checkmark \checkmark \checkmark$	301	301	$\checkmark \checkmark \checkmark \checkmark$	6，810	6K81	$\checkmark \checkmark \checkmark$			
0.562	R562	$\checkmark \checkmark \checkmark \checkmark$	13.3	13R3		332	332	$\checkmark \checkmark \checkmark$	7，500	7K5	$\checkmark \vee *$			
0.619	R619	$\checkmark \checkmark \checkmark$	15	15R	$\checkmark \checkmark \checkmark *$	374	374	$\checkmark \checkmark \checkmark$	8，250	8K25	$\checkmark \checkmark \checkmark$	$\checkmark=$	dard value	
0.681	R681	$\checkmark \checkmark \checkmark \checkmark$	16.2	－16R2		402	402	$\checkmark レ \checkmark \checkmark$	9，090	9K09	$* \nu$	＝No	－standard	values
0.75	R75	$\pm v$	18.2	18R2	$\checkmark \checkmark \checkmark \checkmark$	453	453	$\checkmark \vee \checkmark$	10，000	－10K	$\checkmark \vee \sim$		ject to mini	imum er
0.825	R825	$\checkmark \checkmark \checkmark \checkmark$	20	20R	$\checkmark \checkmark \checkmark \checkmark$	499	499	$\checkmark \checkmark \checkmark \checkmark$	10，500	10K5	$\checkmark * *$		．	
0.909	R909	$\checkmark * \nu$	22.1	22R1	$\checkmark \checkmark \checkmark$	511	511	$\checkmark \checkmark \checkmark$	11，000	－11K	$\checkmark * *$			
1	1 R 0	$\checkmark \checkmark \checkmark \checkmark$	24.9	24R9	$\checkmark \checkmark \checkmark \checkmark$	562	562	$\checkmark \checkmark \checkmark \checkmark$	12，100	12K1	$\pm * *$	Shad	values inv	volve
1.1	－1R1	$\checkmark \checkmark \checkmark$	27.4	27R4	$\checkmark \checkmark \checkmark$	619	619	$\checkmark \checkmark$	13，300	13 K 3	＊ $2 *$	very	e resistance ould not be	ce wire
1.21	－1R21	$\checkmark \checkmark \checkmark \checkmark$	30.1	30R1	$\checkmark \checkmark \checkmark \checkmark$	681	681	$\checkmark \checkmark \checkmark \downarrow$	15，000	－15K	$\checkmark \checkmark \checkmark$	in criti	cal applicati	tions
1.330	－1R33		33.2	33R2	$\checkmark \checkmark \checkmark$	750	750	$\checkmark \checkmark \checkmark$	16，200	16K2	$\pm \downarrow *$	withou	burn－in and cycling．	nd／or
1.5	－1R5	$\checkmark \checkmark \checkmark \checkmark$	37.4	37R4	$\checkmark * v$	825	－825	$\checkmark \checkmark \checkmark \checkmark$	18，200	18K2	$\div v *$			
1.62	－1R62	$\div \checkmark$	40.2	40R2	$\checkmark \checkmark \checkmark \checkmark$	909	909	$\checkmark \checkmark \checkmark$	20，000	20K	$\checkmark \checkmark \checkmark$	Check	duct availa	ability at
1.82	－1R82	$\checkmark \checkmark \checkmark \checkmark$	45.3	45R3	$\checkmark \checkmark \checkmark$	1，000	1K0	$\checkmark \checkmark \checkmark \checkmark$	22，100	22K1	$\checkmark \checkmark$	WWW	ohmite．c	com
2	2R0	$\checkmark \checkmark \checkmark \checkmark$	49.9	$49 \mathrm{R9}$	$\checkmark \checkmark \checkmark \checkmark$	1，100	－1K1	$\div v$	24，900	24K9	$\checkmark \checkmark$			

The 89 Series is a high－per－ formance axial type resistor． These molded－construction metal－housed resistors are available in higher power rat－ ings than standard axial resis－ tors and are better suited to withstanding vibration，shock and harsh environmental con－ ditions．

The 89 Series Metal－Mite ${ }^{\circledR}$ resistors are aluminum housed to maintain high stability during operation and to permit secure mounting to chassis surfaces．

The metal housing also provides heat－sinking capabili－ ties．

FEATURES

－High Stability：$\pm 0.5 \% \Delta R$ ．
－High power to size ratio．
－Metal housing allows chassis mounting and provides heat sink capability．

As of September 2006， the 89 Series is no longer offered as Mil．Spec．

SPECIFICATIONS

Material

Housing：Metal，anodized alumi－ num．
Internal Coating：Silicone．
Core：Ceramic．
Terminals：Solder－coated axial．
Derating：Linearly from
100%＠$+25^{\circ} \mathrm{C}$ to 0%＠ $+275^{\circ} \mathrm{C}$ ．

Electrical

Tolerance：$\pm 1 \%$ and $\pm 5 \%$（other tolerances available）．
Power rating：Rating is based on chassis mounting area and temperature stability．Proper heat sink as follows： 5 W and 10 W units， 4 ＂$\times 6$＂$\times 2$＂$\times .040^{\prime \prime}$ Aluminum chassis； 25 W units， 5 ＂ x 7＂x 2 ＂x 040 ＂Aluminum chas－ sis； 50 W units， $12^{\prime \prime} \times 12^{\prime \prime} \times$ ．059＂ Aluminum panel．
Maximum ohmic values： See chart．
Overload： 5 times rated wattage for 5 seconds．

Temperature coefficient：

 Under 1 $1 \Omega: \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 1 to $9.99 \Omega: \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω and over：$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Dielectric withstanding voltage： 5 W and 10 W rating， 1000 VAC； 25 and 50W ratings， 2250 VAC．

89 Series Metal－Mite ${ }^{\text {Aluminum Housed }}$ Axial Term．Wirewound，1\％Tolerance

Series	Wattage	Ohms	Voltage
$\mathbf{8 0 5}$	5	$0.10-25 \mathrm{~K}$	210
$\mathbf{8 1 0}$	10	$0.10-50 \mathrm{~K}$	320
$\mathbf{8 2 5}$	25	$0.005-75 \mathrm{~K}$	520
$\mathbf{8 5 0}$	50	$0.005-100 \mathrm{~K}$	1170

Non－Inductive versions available．Insert＂N＂before tolerance code．Example：850NF560

	5 watt	10 watt	25 watt	50 watt
Series（Industrial）	805	810	825	850

Dimensions

Dim．A（in． $\pm 0.062 / m m \pm 1.57$ ） $1.125 / 28.591 .375 / 34.931 .938 / 49.23 \quad 2.781 / 70.64$ Dim．B（in． $\pm 0.010 / \mathrm{mm} \pm 0.25) \quad 0.490 / 12.45 \quad 0.625 / 15.88 \quad 0.781 / 19.84 \quad 0.844 / 21.44$ Dim．C（in． $\pm 0.031 / \mathrm{mm} \pm 0.79) \quad 0.078 / 1.98 \quad 0.094 / 2.39 \quad 0.172 / 4.37 \quad 0.188 / 4.78$ Dim．D（in． $\pm 0.010 / \mathrm{mm} \pm 0.25) \quad 0.444 / 11.28 \quad 0.562 / 14.28 \quad 0.719 / 18.26 \quad 1.562 / 39.68$ \begin{tabular}{llllll}
Dim．E $($ in． $\pm 0.062 / \mathrm{mm} \pm 1.57)$ \& $0.600 / 15.24$ \& $0.750 / 19.05$ \& $1.062 / 26.98$ \& $1.938 / 49.23$

\hline

 $\overline{\text { Dim．F }(\text { in．} \pm 0.062 / \mathrm{mm} \pm 1.57)} 00.266 / 6.76 \quad 0.312 / 7.93 \quad 0.438 / 11.130 .438 / 11.13$ Dim．G（in． $\pm 0.062 / \mathrm{mm} \pm 1.57) \quad 0.334 / 8.48 \quad 0.438 / 11.13 \quad 0.531 / 13.490 .594 / 15.09$ Dim．H（in． $\pm 0.031 / \mathrm{mm} \pm 0.79) \quad 0.245 / 6.22 \quad 0.312 / 7.93 \quad 0.391 / 9.93 \quad 0.422 / 10.72$ Dim．J（in． $\pm 0.031 / \mathrm{mm} \pm 0.79) \quad 0.646 / 16.41 \quad 0.812 / 20.631 .094 / 27.791 .156 / 29.36$

Dim．K $($ in． $\pm 0.005 / \mathrm{mm} \pm 0.13)$ \& $0.093 / 2.36$ \& $0.094 / 2.39$ \& $0.125 / 3.18$ \& $0.125 / 3.18$

\hline
\end{tabular} $\overline{\text { Dim．L（in．} \pm 0.031 / m m \pm 0.79)} 00.320 / 8.13 \quad 0.406 / 10.31 \quad 0.562 / 14.28 \quad 0.625 / 15.88$ Dim．M（in． $\pm 0.062 / \mathrm{mm} \pm 1.57$ ） $0.133 / 3.38 \quad 0.203 / 5.16 \quad 0.281 / 7.14 \quad 0.312 / 7.92$ Dim．N（in． $\pm 0.031 / \mathrm{mm} \pm 0.79) \quad 0.065 / 1.650 .094 / 2.39 \quad 0.094 / 2.39 \quad 0.094 / 2.39$ Dim．P（in． $\pm 0.005 / \mathrm{mm} \pm 0.13$ ） $0.050 / 1.27 \quad 0.085 / 2.16 \quad 0.085 / 2.16 \quad 0.085 / 2.16$ Q min AWG

Dim．R（in．，min／mm，min）	$0.085 / 2.16$	$0.140 / 3.56$	$0.140 / 3.56$	$0.140 / 3.56$

STANDARD PART NUMBERS									
Ohmic value	Part No． Prefix＞ Suffix \boldsymbol{V}	Wattage ゥ 우 ~ ~ 		Part No． Prefix $>$ Suffix \boldsymbol{V}	Wattage 容涼		Part No． Prefix＞ Suffix \mathbf{V}	Wattage i으 숭 宮嵩 耑 嵩	
0.005	R005	$\checkmark \checkmark$	20	20R	$\checkmark \checkmark$	1，500	－1K5	$v * * v$	$\boldsymbol{\nu}=$ Standard values
0.010	R010	$\checkmark \checkmark$	25	25R	レレレレ	2，000	2K0	$v \checkmark *+$	$\boldsymbol{*}=$ Non－standard values subject to minimum
0.025	R025	$\checkmark v$	30	30R	＊＊	2，500	2K5	$\checkmark \checkmark$	handling charge per item
0.1	R10	$\checkmark v$	40	40R	$* V$	3，000	3K0	＊V＊	
0.3	R30	$\checkmark *$	50	50R	レレレレ	3，500	3K5	＊+	
0.5	R50	$\checkmark *$	75	75R	$\checkmark * \checkmark \checkmark$	4，000	4K0	$\checkmark \checkmark$	Shaded values involve very fine resistance wire and
0.7	R70	＊＊	100	－100	レレレレ	4，500	－4K5	＊$*$	should not be used in critical applications without
1.0	－1R0	レレレレ	150	－150	レレレレ	5，000	－5K0	$\checkmark \checkmark \checkmark \checkmark$	
1.5	－1R5	＊	200	200	＊$+v$	6，000	6K0	＋＋	
2.0	2R0	＊\downarrow V	250	250		10，000	－10K	$v * v v$	
3.0	－3R0	くレレレ	300	－300	$\checkmark *$	15，000	－15K	$\checkmark \checkmark * *$	
4.0	4R0	＊V	400	400	＊	20，000	－20K	＊+	
5.0	－5R0	レレレレ	500	500	$\nu * レ \nu$	25，000	－25K	$\checkmark * * *$	
10.0	－10R		750	－750	＊＊V V	50，000	50K	＊	
15.0	－15R	レレレレ	1，000	－1K0		$\begin{array}{r} 75,000 \\ 100,000 \end{array}$	$\begin{array}{r} 75 \mathrm{~K} \\ -100 \mathrm{~K} \end{array}$		Check product availability at www．ohmite．com

Lead Free Vitreous Enamel Molded Axial Term. Wirewound, 5\% Tolerance Standard

* $2 x$ power ratings by using heat-sink mounting clips shown on following page.

Note: Due to space restrictions, parts are stamped with wattage ratings reduced to the nearest whole number. The actual wattage ratings are as published in this catalog.

When you need the highest quality wirewound axial terminal resistors available, choose Ohmite's 90 Series resistors.

They are manufactured by a unique process that molds the vitreous enamel over the resistive element, helping to ensure consistent dimensions. This uniformity permits 90 Series resistors to be mounted in clips, creating a heat-sinking benefit (see next page).

The durable vitreous enamel coating, which is totally lead free, permits the 90 Series resistors to maintain a hard coating while operating at high temperatures. Mechanical integrity is enhanced by the all-welded construction.

FEATURES

- Molded Construction provides consistent shape and size (Permits mounting in clips which extends power rating).
- Meets MIL-R-26 requirements for insulated resistors.
- All-welded construction.
- Flame resistant lead free vitreous enamel coating.
- Higher ratings in smaller sizes.
- Heat sink mounting clips available.
- RoHS compliant; add "E" suffix to part number to specify.

SPECIFICATIONS

Material

Coating: Molded lead free vitreous enamel.
Core: Ceramic.
Terminals: Solder-coated copper clad axial.
Derating: Linearly from
100% @ $+25^{\circ} \mathrm{C}$ to
0% @ $+350^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 5 \%$ (other tolerances available).
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating. (other wattages available*).
Maximum ohmic values: See chart.

Overload:

Under 11 watts: 5 times rated wattage for 5 seconds.
11 watts: 10 times rated wattage for 5 seconds.
Temperature coefficient: 1 to 9.99Ω : $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω and over: $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Dielectric withstanding voltage: 500 VAC: 1 watt rating 1000 VAC: $2,3,5$ and 11 watt rating.

- Prevents severe vibration or mechanical shock to resistor
- Increases resistor wattage up to 100% when mounted on metal surface (1.5 sq . in. by 0.040 in. thick min. per watt dissipated)
- Holes in clip base permit fastening to chassis surface with machine screws, eyelets or rivets
- Sold in bags of ten (10)

STANDARD PART NUMBERS FOR 90 SERIES MOUNTING CLIP								
Part No.	Resistor rating (watts)	Clip length (in./mm)	Clip width (in./mm)	Clip height (in./mm)	No. of holes	Hole centers (in./mm)	Hole diameter (in./mm)	r standard values
$\checkmark 5900$	1.5	0.40 / 10.319	$0.150 / 3.810$	$0.250 / 6.350$	1		0.71 / 1.803	$\boldsymbol{\nu}=$ Standard values
$\checkmark 5902$	2.25	0.35 / 8.890	0.217 / 5.500	0.275 / 6.980	2	0.156 / 3.969	0.71 / 1.803	* = Non-standard values subject to
+5904	3.25	$0.50 / 12.700$	$0.257 / 6.500$	0.319 / 8.103	2	$0.250 / 6.350$	$0.093 / 2.362$	minimum handling charge per
± 5906	5.0	0.90 / 22.860	0.237 / 6.019	$0.284 / 7.214$	2	$0.400 / 10.160$	$0.103 / 2.616$	item
± 5908	11.0	1.75 / 44.450	0.333 / 8.458	0.377 / 9.576	2	0.800 / 20.320	$0.103 / 2.616$	

FEATURES

- Welded construction
- Inorganic and non-hygroscopic, Centohm coating seals and protects the resistance wire.
- Exceeds MIL-R-26 moisture requirements
- Centohm Resistors are designed to meet and exceed performance characteristics of vitreous enamel resistors.
- Centohm is more cost effective than vitreous enamel.
- $\pm 5 \%$ resistance tolerance

OPTIONS

Noninductive: This specially designed version is wound using the Ayrton-Perry method.
Resistance Tolerances: Options include $5 \%, 1 \%, 0.5 \%, 0.25 \%$, and 0.1% resistors.
Terminal Sizes: Alternate terminal diameters available.
Tape and Reel: Resistors taped for automatic insertion. Contact Ohmite for size, quantity and ordering information

Ohmite's Axiohm resistors are Centohm coated for maximum reliability. These all-welded units are characterized by their low temperature coefficients and resistance to thermal shock, making them ideal for a wide range of electrical and electronic applications.

Axiohm Series

Centohm Coated Axial Terminal Wirewound

Watt Rating Form	$\begin{aligned} & \text { Resistance } \\ & \text { Range } \\ & (\Omega) \\ & \operatorname{Min} . \quad \text { Max. } \end{aligned}$	Standard Resistance Tolerance	Dielectric Withstanding Voltage	Maximu Voltage Rating	$\begin{array}{lc} \text { ec A } \\ \mathrm{g} \pm .063 " \end{array}$	$\begin{gathered} \text { B } \\ \pm .031 " \end{gathered}$		D max clean term. to clean term
1 C	0.1 4K	$\pm 5 \%$	500	100	$0.313 \pm .031$	0.094	\#24 (.020")) 0.406
2 C	0.1 10K	$\pm 5 \%$	500	300	0.375	0.219	\#20 (.032")	0.469
3 C	0.1 20K	$\pm 5 \%$	500	450	0.5	0.219	\#20 (.032")) 0.594
4 C	0.1 30K	$\pm 5 \%$	500	600	0.688	0.219	\#20 (.032")	0.813
50	0.1 40K	$\pm 5 \%$	500	800	0.938	0.219	\#20 (.032")) 1.063
7 C	0.150 K	$\pm 5 \%$	500	875	1	0.313	\#20 (.032")	1.125
10C	0.1 90K	$\pm 5 \%$	500	16001	1.563	0.313	\#20 (.032")) 1.688

```
SPECIFICATIONS
Material
Coating: Flameproof proprietary Centohm
Core: Ceramic
Element: Copper-nickel alloy or nickel-chrome alloy depending on resistance value
End Cap: Stainless steel
```

PERFORMANGE DATA	
Test	Maximum
Temperature Coefficient	$\begin{aligned} & \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { above } 10 \Omega \\ & \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 1 \text { to } 10 \Omega \\ & \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { below } 1 \Omega \end{aligned}$
Thermal Shock	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Short Time Overload	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Dielectric	$\pm(0.1 \%+.05 \Omega) \Delta R$
Low Temperature Storage	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
High Temperature Exposure	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Moisture Resistance	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Shock	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Vibration	$\pm(2 \%+.05 \Omega) \Delta \mathrm{R}$
Load Life	$\pm(3 \%+.05 \Omega) \Delta \mathrm{R}$
Terminal Strength	$\pm(1 \%+.05 \Omega) \Delta \mathrm{R}$

$\Delta \mathrm{R}$ values are maximums based on MIL-R-26 testing requirements at $350^{\circ} \mathrm{C}$.

Terminals: Tinned Copper weld Derating
Linearly from
100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+350^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 5 \%$ (Std) down to 0.1% available.
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating (other wattages available).

Overload: Under 5 watts: 5 times rated wattage for 5 seconds. 5 watts and over: 10 times rated wattage for 5 seconds.
Temperature coefficient: $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ above 10Ω $0 \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 1$ to 10Ω $0 \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ below 1Ω

Capacitor Discharge \& Symmetry

ordering information
Check product availability at www.ohmite.com

Standard Part numbers

	STANDARD PART NUMBERS	
Ohms	10 watt	13 watt
1 K	GW10J1K00E	GW13J1K00E
2.5 K	GW10J2K50E	GW13J2K50E
5K	GW10J5K00E	GW13J5K00E
7.5K	GW10J7K50E	GW13J7K50E
10K	GW10J10K0E	GW13J10K0E
15 K	GW10J15K0E	GW13J15K0E
20K	GW10J20K0E	GW13J20K0E
25K	GW10J25K0E	GW13J25K0E
40K	GW10J40K0E	GW13J40K0E
50 K	GW10J50K0E	GW13J50K0E
75 K	GW10J75K0E	GW13J75K0E

FEATURES

- High Power Dissipation up to 13 W @ $25^{\circ} \mathrm{C}$
- Specially Designed to meet

Repetitive Pulse Loading

- Corrosion Resistant Terminals for long life
- Superior Vibration Resistance
- IEC 115-1 Reference Standard

PERFORMANGE DATA		
Endurance at Rated Temperature	Full Rated Power for 1000hrs, (1.5hrs ON, 0.5 hrs OFF) at $25^{\circ} \mathrm{C}$	$\Delta \mathrm{R}<5 \%+0 \mathrm{R} 05$
Short Term Overload	$10 \times$ Rated Power for 5 secs, IEC115-1, Clause 4.1.3	$\Delta \mathrm{R}<2 \%+0 \mathrm{R} 05$
Damp Heat Steady State	90-95\% RH, $40^{\circ} \mathrm{C}, 56$ Days, IEC 115-1, Clause 4.17.3	$\Delta \mathrm{R}<5 \%+0 \mathrm{R} 05$
Climatic Sequence	As per IEC 115-1,Clause 4.23	$\Delta \mathrm{R}<5 \%+0 \mathrm{R} 05$
Solderability	Not Applicable-Resistor is Designed for Screw Mounting Only	
Terminal Strength	25 N Pull Test for 10 Seconds, IEC 115-1, Clause 4.16	$\Delta \mathrm{R}<0.5 \%+0 \mathrm{R} 05$

COMPATIBLE GAPACITORS									
BHC				ILL Capacitor					
GW10 Series ALS30/3	$\begin{gathered} \text { Case } \\ \text { Sizes } \\ 31 \mathrm{KE}, \mathrm{KF} \end{gathered}$	GW13 Series ALS30/3	Case Sizes 1 ND, NF, NP, NT, RD, RH, RP	GW10	Case	GW13	Case		
				Series	Sizes	Series	Sizes		
				LKP	51	LKP	77, 90		
				LRP	51				
				Nichicon UK					
Cornell Dubilier				GW10 Series NR	Case	GW13	Case		
GW10 Series		GW13	Case		Sizes	Series	Sizes		
	Case				51	NR	76.2, 90		
	SizesEA, EB,EC, ED,	$\begin{aligned} & \text { Series } \\ & 3186 \end{aligned}$	Sizes GC, GD, GE, GF, GG, GH, GJ, DN	NT	51	NT	76.2, 90		
3186				NWNX	51	NW	76.2, 90		
					51	NX	76.2, 90		
	EE, EF,			QR	51	QR	76.2, 90		
3188	EA, EB,	3188		Panasonic					
	EC, ED,		GE, GF,	GW10	Case	GW13	Case		
	EE, EF,		GG, GH,	Series	Sizes	Series	Sizes		
520 C	BA, BH,	520 C	DB, DJ,		FE, FG, FH, FK, FL, FN,		HK, HL, HN, HP, HW		
	BB, BJ,								
	BC, BD,		DE, DF,						
	BE, BF		DP, DN,						
			FD, FE,	United Chemi-Con					
			FF, FP,	GW10	Case	GW13	Case		
DCMC	BA, BH BB, BJ, BC, BD BE, BF	DCMC	FN, FG	Series	Sizes	Series	Sizes		
			DB, DJ,	KMH	50	LXA	76, 89		
			DC, DD,	LXA	50	LXR	76, 89		
			DE, DF,	RWE	50	KMH	76, 89		
			DP, DN,	RWF	50	RWE	76, 89		
			DG, FC,	RWY	50	RWF	76, 89		
			FD, FE,	SME	50	RWL	76, 89		
			FF, FP,			RWY	76, 89		
			All					SME	76, 89
OTB MPF PF								UTOR	
				Vishay					
	BJ, BC,								
	BE, BF					GW13	Case		
SCR	A			Series	Sizes	Series	Sizes		
SF	All			36 DE	BM, BA,	36 D,	DB, DJ,		
T	A			36 CX	BM, BC,	36DE,	DC, DD,		
Epcos					$\begin{aligned} & \mathrm{BD}, \mathrm{BE}, \\ & \mathrm{BF} \end{aligned}$				
GW10	Case	GW13	Case						
Series	Sizes	Series	Sizes						
B41456	51.6	B41456	76.9						
B41458	51.6	B41458	76.9						
B43456	51.6	B43456	76.9, 91						
B43458	51.6	B43458	76.9, 91						

The HS/HSN Series offers greater power capacity (100 and 250 watts) in the same design format as Ohmite's 89 Series.

HS/HSN Series maintains the same construction, materials, and manufacturing techniques as the 89 Series. As a made-to-order product, it is recommended for higher volume applications.

FEATURES

- Standard winding (Model HS)
- Non-inductive winding (Model HSN)
- Molded construction for total environmental protection
- Complete welded construction
- Mounts on chassis to utilize heat-sink effect
- High stability at conventional power ratings
- Flat marking surface for easy identification
- RoHS compliant; add "E" suffix to part number to specify.

SPECIFICATIONS

Material

Housing: Aluminum with hard anodic coating.
Internal Coating: Silicone.
Core: Ceramic.
Terminals: Solder-coated axial
Derating: Linearly from
100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+275^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 1 \%$ and $\pm 5 \%$ (other tolerances available).
Power rating: Rating is based on chassis mounting area and temperature stability. Proper heat sink: 12 " x 12 " x 0.125 Aluminum panel.
Maximum ohmic values: See chart.
Overload: 5 times rated wattage for 5 seconds.
Temperature coefficient: Under 1 $\Omega: \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 1 to 9.99Ω : $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ 10Ω and over: $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Dielectric withstanding voltage: 4500VAC.

Aluminum Housed Axial Terminal Wirewound, Industrial/Commercial Grade

	DIMENSIONS	
	HS100 / HSN100	HS250 / HSN250
in. (mm)	$\mathbf{1 0 0}$ watt	$\mathbf{2 5 0}$ watt
Dim. A	$2.75 \pm .010(69.85 \pm .254)$	$3.875 \pm .010(98.425 \pm .254)$
Dim. B	$2.25 \pm .010(57.15 \pm .254)$	$2.5 \pm .010(63.50 \pm .254)$
Dim. C	$3.50 \pm .031(88.90 \pm .787)$	$4.5 \pm .031(114.30 \pm .787)$
Dim. D	$5.478 \pm .093(139.14 \pm 2.36)$	$7.0 \pm .093(117.80 \pm 2.36)$
Dim. E	$1.812 \pm .031(46.02 \pm .787)$	$2.125 \pm .031(53.98 \pm .787)$
Dim. F	$2.812 \pm .031(71.42 \pm .787)$	$3.0 \pm .031(76.20 \pm .787)$
Dim. G	$1.75 \pm .031(44.45 \pm .787)$	$2.188 \pm .031(55.58 \pm .787)$
Dim. H	$0.188 \pm .031(4.78 \pm .787)$	$0.250 \pm .031(6.35 \pm .787)$
Dim. I	$0.770 \pm .015(19.56 \pm .381)$	$0.955 \pm .015(24.26 \pm .381)$
Dim. J	$0.375 \pm .031(9.52 \pm .787)$	$0.312 \pm .031(7.92 \pm .787)$
Dim. K	$0.188 \pm .010(4.78 \pm .254)$	$0.188 \pm .010(4.78 \pm .254)$
Dim. L	$0.219 \pm .031(5.56 \pm .787)$	$0.25 \pm .031(6.35 \pm .787)$
Dim. M	$12-24$ UNC $-2 A$ THD	$1 / 4-20$ UNC -2 A THD
Dim. N	$0.989 \pm .031(25.12 \pm .787)$	$1.25 \pm .031(31.75 \pm .787)$

derating gurve

ORDERING INFORMATION

To see the latest in resistor technology click on the "What's New" tab at ohmite.com

Metalohm Series

Cold Rolled Steel Encased Wirewound Heatsinkable Radial Terminal

*Based on a $12 " \times 12^{\prime \prime} x^{1} / 8^{\prime \prime}$ aluminum heat sink, using a thermal compound, in a $25^{\circ} \mathrm{C}$ ambient
**Standard winding ranges only listed, other values available; contact Ohmite.

OPTIONS

- Noninductive versions (ArytonPerry windings)
- Terminal sleeves to increase dielectric strength and maximize creepage distance
- Variety of terminal choices
- Potted or soldered wire terminals including quick connect, ring, spade terminals
- Tapped models

| D\|E L E C T R | C | S T R E N G T H | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Terminal Type 211 | $\mathbf{2 5 2}, \mathbf{2 7 9}$ | $\mathbf{2 7 6}$ | | $\mathbf{2 7 8}$ | $\mathbf{2 7 7}$ | $\mathbf{2 9 7}$ | $\mathbf{2 9 8}$ |
| Style | | | Dielectric Strength | | | | |
| 20/45M | 1500 | N/A | N/A | N/A | N/A | 2500 V | 2500 V |
| 40/70M | 1500 | 1500 | 2500 | 2500 | N/A | 2500 V | 2500 V |
| HV40/70M | N/A | N/A | N/A | N/A | 4250 | N/A | N/A |
| 50/100M | 1500 | 1500 | 2500 | 2500 | N/A | 2500 V | 2500 V |
| 60/115M | 1500 | 1500 | 2500 | 2500 | N/A | 2500 V | 2500 V |

ORDERING INFORMATION

RoHS Complian
I
40/70MNJ10K50AE
Style

n-inductive Tolerance

 (optional) $\mathrm{K}=10 \%$ $J=5 \% \quad 00$ R05 $=0.0$ $\begin{array}{lll}00 R 50=0.50 & A=211 & E=277 \\ B=252 & F=278\end{array}$ $\begin{array}{lll}1 R 000=1.00 & C=279 & G=297 \\ 1 K 000=1,000 & D=276 & H=298\end{array}$ $10 K 50=10,500$

Check product availability at WWW.ohmite.com

F E A T U R E S

- Flameproof and inorganic
- Higher power rating due to heat sink capacity
- All welded construction
- Nonhygroscopic
- High surge construction

SPECIFICATIONS

Electrical

Wattage: Based on a $275^{\circ} \mathrm{C}$ "U" characteristic derating curve Temperature coefficient: ≥ 18 ohm: $0 \pm 90 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $8<18$ ohm: $0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ <8 ohm: $0 \pm 180 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (TC for some watt/ohm combinations may be lower)
Dielectric strength: Terminal to case, depends on terminal style (1500V min.)

Creepage:

term. style 277: 1.2"
term. style 278: 0.4"
term. style 276: 0.7"
term. styles 211/252/279: 0.15"

Termination Wires

- Stranded, available in any insulation rated $125^{\circ} \mathrm{C}$ or higher (may require term. style 297).
- Custom cut/stripped lengths
- Can be potted or pre-soldered to terminal styles 211 or 252
- Quick connect (fully or partially insulated), ring or spade terminations available
Dielectric Sleeves
- Steatite construction
- Style 276 meets UL/NEMA 2500 V RMS for one minute requirement
- Available as terminal styles 276, 277, 278, 297

> Subscribe to our
> New Product Bulletin at ohmite.com

Material
Core: Ceramic.
Coating: Vitreous enamel except for values above 4.7 K (3W) and $7.5 \mathrm{~K}(5 \mathrm{~W})$, which are supplied in silicone-ceramic coatings.
Terminals: Solder coated radial. \#20 ga. tinned terminals require 0.046 in. (1.168 mm) holes (2)

Derating: Linearly from
100% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+350^{\circ} \mathrm{C}$.
Note: Values above 3.9K (3W) and $8.2 \mathrm{~K}(5 \mathrm{~W})$ involve very fine resistance wire and should not be used in critical applications without burn-in and/or thermal cycling.

Electrical

Tolerance: $\pm 5 \%$ (J) (other tolerances available).
Power rating: Based on $25^{\circ} \mathrm{C}$ free air rating.
Overload:
3 watt: 5 times rated wattage for 5 seconds.
5.25 watt: 10 times rated wattage for 5 seconds.
Temperature coefficient: ± 260 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
To calculate max. amps: use the formula $\sqrt{P / R}$.

FEATURES

- Radial construction for direct PC-58 Series

Tubular Radial Terminal Wirewound for PC Board Applications matrix boards with standard 0.046 inch diameter holes. Provides a built in stand-off to reduce board temperature.

- Space saving radial terminals reduce the total length requirement compared to axial terminal resistors and increase packaging density possibilities.
- Flame resistant lead free vitreous enamel coating.
- RoHS compliant; add "E" suffix to part number to specify.

| | | Dimensions (in. / mm) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Wattage | Ohms | Length | Height | Diam. | Dim. A | Voltage |
| R3 (vitreous) | 3 | $1-3.9 \mathrm{~K}$ | $0.438 / 11.13$ | $0.469 / 11.91$ | $0.313 / 7.95$ | $0.30 / 7.62$ | 103 |
| (silicone) | | $4 \mathrm{~K}-10 \mathrm{~K}$ | | | | | |
| R5 (vitreous) | 5.25 | $1-7.4 \mathrm{~K}$ | $0.625 / 15.88$ | $0.516 / 13.11$ | $0.344 / 8.74$ | $0.50 / 12.70$ | 187 |
| (silicone) | | $7.5 \mathrm{~K}-20 \mathrm{~K}$ | | | | | |

STANDARD PART NUMBERS FOR PG-58 SERIES												
	Part No. Prefix Suffix ∇	Wattage ๓ เ 		Part No. Prefix $>$ Suffix ∇	Wattage ๓ 	$\begin{aligned} & \text { OD } \\ & \text { No } \\ & \text { O} \\ & \text { E } \end{aligned}$	Part No. Prefix $>$ Suffix ∇	Wattage ๓ 5 ల్లె て్ర		Part No. Prefix $>$ Suffix ∇	Wattage ∞ ల్లై	$\boldsymbol{\nu}=$ Standard values Values above 3.9 K (3 W) and 8.2 K (5 W) involve very fine resistance wire and
1	1 R 0	$\checkmark \checkmark$	51	51R	\checkmark	430	430	\checkmark	2500	2K5	\checkmark	should not be used
1.5	1 R 5	$\checkmark v$	56	56R	$\checkmark \checkmark$	500	500	$\checkmark \checkmark$	2700	2 K 7	\checkmark	in critical applica-
2	2R0	$\checkmark \checkmark$	68	68R	$\checkmark \checkmark$	510	510	\checkmark	3000	зко	\checkmark	tions without burn-
2.4	2R4	\checkmark	75	75R	\checkmark	560	560	$\checkmark \checkmark$	3300	зК3	\checkmark	in and/or thermal
3	3R0	$\checkmark \checkmark$	82	82R	$\checkmark \vee$	600	600	$\checkmark \checkmark$	3900	зк9	$\checkmark \checkmark$	cycling.
3.9	3R9	$\checkmark \checkmark$	100	100	$\checkmark \checkmark$	620	620	\checkmark	4700	4K7	$\checkmark v$	Values above 4.7K
5	5R0	\checkmark	120	120	$\checkmark \checkmark$	750	750	$\checkmark \checkmark$	5000	5K0	$\checkmark \checkmark$	(3W) and 7.5K (5W)
5.1	5R1	\checkmark	150	150	$\checkmark \checkmark$	800	800	\checkmark	5600	5K6	$\checkmark v$	supplied in silicone-
5.6	5R6	\checkmark	160	160	\checkmark	820	820	\checkmark	6200	6K2	$\checkmark \checkmark$	ceramic coatings
7.5	7R5	\checkmark	200	200	$\checkmark \vee$	910	910	\checkmark	6800	6K8		enamel.
10	10R	$\checkmark \checkmark$	220	220	\checkmark	1000	$1 \mathrm{K0}$	$\checkmark \checkmark$	7500	7 K 5	$\checkmark \checkmark$	
15	15R	$\checkmark \checkmark$	250	250	$\checkmark \checkmark$	1200	1K2	$\checkmark \checkmark$	8200	8K2	\checkmark	
18	18R	\checkmark	270	270	$\checkmark \checkmark$	1300	1 K 3	\checkmark	9000	9K0	$\checkmark \checkmark$	
20	20R	$\checkmark \checkmark$	300	300	$\checkmark \checkmark$	1500	1 K 5	\checkmark	9100	9K1	\checkmark	
22	22R	\checkmark	330	330	$\checkmark \vee$	1800	1 1 8	$\checkmark \checkmark$	10,000	10K	\checkmark	
25	25R	\checkmark	350	350	\checkmark	2000	2K0	$\checkmark \checkmark$	12,000	12K	\checkmark	
30	30R	$\checkmark \checkmark$	390	390	\checkmark	2200	2K2	\checkmark	15,000	15K	\checkmark	
40	40R	\checkmark	400	400	\checkmark	2400	2K4	\checkmark	20,000	20K	\checkmark	
50	50R	$\checkmark \checkmark$										
Check product availability at www.ohmite.com												

Our friendly Customer Service team can be reached at 866-9-OHMITE

WFH Series

Aluminum Housed Wirewound Power

DESIGNING

The following equations are applied in the dimensioning of the resistors at stationary load. If more information is required please consult Ohmite. It is assumed that the air around the resistors is stationary (worst case). See ohmite.com for more examples.

1. WFH is mounted on a heat sink:
A. The thermal resistance Rтн of the heat sink is known,

$$
\begin{aligned}
& \mathrm{T}=\mathrm{W}_{\text {MAX }} \mathrm{X}\left(\mathrm{R}_{\mathrm{TH} 4}+\mathrm{R}_{\mathrm{TH}}\right) \\
& \text { Check that: }
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{MAX}}=\mathrm{W}_{\mathrm{MAX}} \mathrm{X}\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{TH} 3}+\mathrm{R}_{\mathrm{TH} 1}\right)+\mathrm{T}_{\mathrm{AMB}}<220^{\circ} \mathrm{C}
$$

B. The Temperature of the Heat Sink is known,

$$
\mathrm{T}=\mathrm{W}_{\mathrm{MAX}} \times \mathrm{R}_{\mathrm{TH} 4}+\mathrm{T}_{\mathrm{H}}
$$

Check that:
$\mathrm{T}_{\text {MAX }}=\mathrm{W}_{\text {MAX }} \times\left(\mathrm{R}_{\text {TH } 1}+\mathrm{R}_{\text {TH3 }}\right)+\mathrm{T}_{\mathrm{H}}<220^{\circ} \mathrm{C}$
2. WFH is mounted without a heat sink:

Check that:
$\mathrm{T}_{\text {MAX }}=\mathrm{W}_{\text {MAX }} \times\left(\mathrm{R}_{\text {TH } 1}+\mathrm{R}_{\text {TH2 }}\right)+\mathrm{T}_{\text {AMB }}<220^{\circ} \mathrm{C}$
Where:
$\mathrm{W}_{\text {MAX }}=$ Maximum reguired load in resistor
$\mathrm{T}_{\text {MAX }}=$ Maximum hot spot temperature reguested in resistor ($\mathrm{T}_{\text {MAX }}$ $<220^{\circ} \mathrm{C}$) The lower $\mathrm{T}_{\text {MAx }}$ the higher reliability and lifetime.
$\mathrm{T}_{\mathrm{AMB}}=$ Ambient temperature
$\mathrm{R}_{\text {TH }}=$ Thermal resistance. Refer to table Thermal resistances
$T_{H}=$ Heat sink temperature (chassis).
$\mathrm{T}=$ Temperature on top of the Aluminum profile.

Ohmite's new flat core winding technology allows for wirewound heatsinkable resistors affording a very low profile, and superior thermal transfer characteristics when compared to conventional aluminum housed wirewound resistors. Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminum profile.
No heat sink compound is required because of large mounting surface.

F E A T URES

- Solder, wire and "Fast-On" Termination
- More resistors in one profile possible
- Custom wire lengths available

SPECIFICATIONS
Power rating: 90W-330W
Resistance tolerance: $\pm 5 \%, \pm 10 \%$
Temperature Coefficients:
Normal: 50ppm - 150ppm
Low ohmic values: 400 ppm
Dielectric strength: 2500 VAC peak
Working voltage: 1200 VAC
Test voltage: 6000 VAC
Lead wire: (wire terminal version only): XLPE, 600V, 125C, 18 AWG stranded
Insulation: Silicone Rubber \& Mica. The Silicone is ULrecognised (UL 94 HB) to a working temperature of $220^{\circ} \mathrm{C}$. Temperatures of up to $300^{\circ} \mathrm{C}$ can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.

POWER DISSIPATION

This graph shows the maximum wattage rating for each possible resistor of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.
THERMAL RESISTANCES

Thermal Resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ between different measuring points					resistor surface to heat sink	aluminum housing
	WFH90	WFH160	WFH230	WFH330	\bigcirc	$\mathrm{R}_{\text {TH2 }}$
$\mathrm{R}_{\text {TH }}$	2	1	0.75	0.5		\bullet
$\mathrm{R}_{\text {TH2 }}$	6.8	3.9	2.75	2		
$\mathrm{R}_{\text {TH3 }}$	0.1	0.05	0.03	0.02	${ }_{\mathrm{R}_{\text {TH3 }}}$	
$\mathrm{R}_{\mathrm{TH}_{4}}$	0.3	0.17	0.1	0.085	aluminum housing to	inum

ORDERING INFORMATION

Check product availability at www.ohmite.com

Standard part NuMbers for WFH SERIES

WFH	WFH160LR47KE	WFH160L1K0JE	WFH230L100JE	WFH330L50RJE
WFH90L10RKE	WFH160L1ROKE	WFH160L5KOJE	WFH230L150JE	WFH330L75RJE
WFH90L25RJE	WFH160L2ROKE	WFH160L10KJE	WFH230L250JE	WFH330L100JE
WFH90L50RJE	WFH160L10RKE	WFH230L1ROKE	WFH230L1K0JE	WFH330L150JE
WFH9OL100JE	WFH160L27RJE	WFH230L2ROKE	WFH230L1K5JE	WFH330L250JE
WFH90L470JE	WFH160L50RJE	WFH230L5ROKE	WFH230L2K5JE	WFH330L1K0JE
WFH90L750JE	WFH160L75RJE	WFH230L10RKE	WFH330L1ROKE	WFH330L5K0JE
WFH90L1KOJE	WFH160L100JE	WFH230L27RJE	WFH330L2ROKE	WFH330L10KJE
WFH90L2K7JE	WFH160L150JE	WFH230L50RJE	WFH330L10RKE	
WFH90L5KOJE	WFH160L250JE	WFH230L75RJE	WFH330L27RJE	

WFHgOLARTKE WFH160LR47KE WFH160LIKOJE WFH230L100JE WFH330L50RJE WFH9OL25RJE WFH160L2ROKE WFH160L10KJE WFH230L250JE WFH33OL100JE WFH90L50RJE WFH160L10RKE WFH230L1ROKE WFH230L1KOJE WFH330L150JE WFH9OL100JE WFH160L27RJE WFH230L2ROKE WFH230L1K5JE WFH330L250JE WFH90L47OJE WFH160L50RJE WFH230L5ROKE WFH230L2K5JE WFH330L1KOJE WFH90L750JE WFH160L75RJE WFH230L10RKE WFH330L1ROKE WFH330L5KOJE WFH90L1KOJE WFH160L100JE WFH230L27RJE WFH330L2ROKE WFH330L10KJE WFH90L2K7JE WFH160L150JE WFH230L50RJE WFH330L10RKE WFH9OL5KOJE WFH16OL250JE WFH23OL75RJE WFH33OL27RJE

Ohmite＇s Brown Devil ${ }^{\circledR}$ is a small，exceptionally durable power resistor．It features all－welded construction and rugged，flame resistant confor－ mal lead free vitreous enamel coating to ensure successful performance under high tem－ peratures．

The wirewound 200 Series has a hollow－core construc－ tion，which accommodates rigid mounting with brackets or thru bolts．

Mounting brackets not included with resistors．

F E A T URES
－Rugged lead free vitreous enam－ el coating
－All－welded construction．
－Self supporting terminal mount－ ing option．
－Higher power ratings．
－Flame－resistant lead free vitre－ ous enamel coating．
－RoHS compliant product avail－ able．Add＂E＂suffix to part num－ ber to specify．

SPECIFICATIONS
Material
Coating：lead free vitreous enamel．
Core：Ceramic．
Terminals：Tinned axial
Derating：Linearly from 100%＠$+25^{\circ} \mathrm{C}$ to 0%＠ $+350^{\circ} \mathrm{C}$ ．
Electrical
Tolerance： 1Ω and over：$\pm 5 \%$ under 1Ω ：$\pm 10 \%$
Power rating：Based on $25^{\circ} \mathrm{C}$ free air rating．
Overload： 10 times rated wattage for 5 seconds．
Temperature coefficient： 5Ω and under：$\pm 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Above 5Ω ：$\pm 260 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
To calculate max．amps：use the formula $\sqrt{P / R}$ ．
1.50 in．$-0 /+0.25$
$\leftarrow 38.10 \mathrm{~mm}-0 /+6.35 \rightarrow \mid$

Series	Wattage	e Ohms	Dimensions（in．／mm）			Lead Gauge	Max． Volt．＊
B5	5.25	0．1－20K	0.625 ／ 15.88	0．250／ 6.35	0.135 ／ 3.43	20	187
B8	8.0	0．03－25K	$1.000 / 25.40$	0．313／7．94	$0.188 / 4.76$	18	250
B12	12.0	0．08－51K	$1.750 / 44.45$	0．313／ 7.94	$0.188 / 4.76$	18	625
B20	20.0	0．1－100K	$2.000 / 50.80$	$0.438 / 11.11$	$0.250 / 6.35$	18	750
Non－Inductive versions available．Insert＂ N ＂before tolerance code．Example－B5NJ10RE							
Also available in low cost Centohm or Silicone coating．Consult Ohmite． ＊Maximum Voltage is based on Ohm＇s Law $\left[\mathrm{V}=\sqrt{P^{*}} \mathrm{R}\right]$ as limited by the resistance value of specified product							

Standard part numbers for 200 SERIES

STANDARD PART NUMBERS FOR 200 SERIES				
			Wattage	
$0.5-$ R50E 1 1R0E $\boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$ $1.1-1 R 1 E$ 1.2 1.3 1 1R2E	$20-20 R E ~$ \boldsymbol{v} 22 22RE \boldsymbol{v} 24 24RE \boldsymbol{v} 25 25RE $\boldsymbol{v} \boldsymbol{v}$ 27 27RE \boldsymbol{v}			16,000 -16 KE 17,500 -17 K 5 E 18,000 -18 KE \boldsymbol{v} 20,000 20 KE 22.500 22 K 5 v
```1.5 -1R5E \checkmark \checkmark 人 1.6 1R6E V 1.8-1R8E  2 2ROEvノひひ 2.2 2R2E```	30－30RE $\boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$    33 33RE $\boldsymbol{v}$   35 35RE   36 36RE   39			25,000 25KE $\boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$   30,000 30 KE $\boldsymbol{v}$   35,000 35 KE $\boldsymbol{v}$   40,000 40 KE $\boldsymbol{v}$   45,000 45 KE $\boldsymbol{v}$
2.4 $2 R 4 E \boldsymbol{\nu}$   2.7 $2 R 7 E \boldsymbol{\iota}$   3 $3 R 0 E \boldsymbol{\iota}$   3.3 $3 R 3 E \boldsymbol{\iota}$   3.6 $3 R 6 E \boldsymbol{v}$				50,000 50 KE $\boldsymbol{v}$   55,000 55 KE    60,000 60 KE    65,000 65 KE    70,000 70 KE    50
	$56-56 R E \boldsymbol{v}$ $62-62 R E \boldsymbol{v}$ $68-68 R E \boldsymbol{v}$ $75-75 R E \boldsymbol{v}$ $82-82 R E \boldsymbol{v}$		5,100 $5 \mathrm{~K} 1 \mathrm{E} \boldsymbol{v}$   5,600 $5 \mathrm{~K} 6 \mathrm{E} \boldsymbol{v}$   6,000 6 KOE   6,200 $6 \mathrm{~K} 2 \mathrm{E} \boldsymbol{\nu}$   6,800 $6 \mathrm{~K} 8 \mathrm{E} \boldsymbol{v}$	75,000 75 KE    8,000 80 KE $\checkmark$   85,000 85 KE    90,000 90 KE    95,000 95 KE
5．1 5R1E $\boldsymbol{\imath}$   5．6 5R6E $\boldsymbol{\imath}$   6.2 6R2E $\boldsymbol{\imath}$   6.8 6R8E $\boldsymbol{\iota}$   7.5 7R5E $\boldsymbol{\imath} \boldsymbol{v}$				100，000－100KE   $\boldsymbol{\nu}=$ Standard values；check availability using the world－ wide inventory search at www．ohmite．com
		1,200 -1 K 2 E   1,250 -1 K 25 E   1,300 -1 K 3 E   $1, \boldsymbol{v}$    1,500 -1 K 5 E   1,600 -1 K 6 E		These values involve very fine resistance wire and should not be used in critical applications without burn－in and／or thermal cycling：
13 $-13 R E$   15 $-15 R E$   16 $-16 R E$   18 $-18 R E$		1,750 -1 K 75 E   1,800 1K8E   2,000 2KOE   2,200 2K2E   2		B5： $6.8 \mathrm{~K}-20 \mathrm{~K} \Omega$   B8： $12.5 \mathrm{~K}-25 \mathrm{~K} \Omega$   B12： $30 \mathrm{~K}-51 \mathrm{~K} \Omega$   B20： $22.5 \mathrm{~K}-100 \mathrm{~K} \Omega$



FEATURES

- Terminals suitable for soldering or bolt connection.
- Adjustable lug supplied.
- High wattage applications.
- All-welded construction.
- Rugged lead free vitreous enamel coating.
- Flame resistant coating.
- Thumb-screw-adjustable lug available (Part No. 2160) for 1.125" core resistors.
- RoHS compliant product available. Add "E" suffix to part number to specify.

Series	Wattage	Ohms	Dimensions (in. / mm)			Core Code	Voltage	Standard Terminal
D12	12	1.0-10K	1.75 / 44.4	0.313 / 7.94	0.188 / 4.76	D	565	57
D25	25	1.0-25K	$2.0 / 50.8$	0.562 / 14.3	$0.313 / 7.94$	K	625	40
D50	50	1.0-100K	4.0 / 101.6	0.562 / 14.3	$0.313 / 7.94$	K	1625	40
D75	75	1.0-100K	6.0 / 152.4	0.562 / 14.3	$0.313 / 7.94$	K	2625	40
D100	100	1.0-100K	6.5 / 165.1	0.750 / 19.1	$0.50 / 12.7$	M	2845	40
D175	175	1.0-100K	$8.5 / 215.9$	$1.125 / 28.6$	0.75 / 19.1	P	3595	46
D225	225	1.0-100K	10.5 / 266.7	$1.125 / 28.6$	0.75 / 19.1	P	4595	46
D500	500	1.5-15K	12.0 / 304.8	$2.50 / 63.5$	1.75 / 44.5	S	4970	45
D1000	1000	3.0-27.7K	20.0 / 508.0	2.50 / 63.5	1.75 / 44.5	S	8900	45

Other sizes available; contact Ohmite. Also available in low cost Centohm or Silicone coating; contact Ohmite.

Choose Ohmite's 210 Type adjustable resistors for applications requiring settings at different resistance values. These wirewound resistors are equipped with an adjustable lug, making them ideal for adjusting circuits, obtaining odd resistance values and setting equipment to meet various line voltages. 210 Type resistors feature a hollow core to permit secure fastening with spring-type clips or thru bolts with washers. They also offer the durability of lead free vitreous enamel coating and all-welded construction. Mounting brackets not included with resistors.

SPECIFICATIONS
Adjustability is $10 \%$ to $90 \%$ of full value. Wattage is proportional to this adjusted resistance value.

## Material

Coating: Lead free vitreous enamel.
Core: Tubular ceramic.

ORDERINGINFO		
```Coating Blank = Vitreous C = Centohm RoHS Compliant S = Silicone```		
$\underset{\text { Series Wattage }}{\text { I }} \frac{25}{1}$	$\begin{aligned} & \text { I } 1 \\ & \text { Tolerance } \\ & \mathrm{J}=5 \% \\ & \mathrm{~K}=10 \% \end{aligned}$	$\begin{aligned} & \frac{\square}{\text { Ohms }} \\ & 1 \mathrm{RO}=1 \Omega \\ & 250=250 \Omega \\ & 1 \mathrm{KO}=1,000 \Omega \\ & 25 \mathrm{~K}=25,000 \Omega \\ & 25 \mathrm{~K} 5=25,500 \Omega \end{aligned}$

Power limitations for high resistance values: When resistance exceeds the resistance values listed below, derate the Power Rating by 25% to improve reliability:

Power	Resistance rating	No power value
derating		
12 W	$4,500 \Omega$	necessary for
25 W	$9,000 \Omega$	ratings higher
50 W	$20,000 \Omega$	than 100 W.
75 W	$35,000 \Omega$	
100 W	$50,000 \Omega$	

Standard part Numbers for 210 SERIES

When limited space is a consideration, choose Ohmite's "thin" stackable 250 Type resistors. These oval-shaped ceramic-core resistors feature a low profile to permit installation in spaces with height restrictions. They are also equipped with integral mounting brackets so they can be fastened to a chassis and stacked in locations with limited surface area.

When properly fastened, the mounting brackets add a heat sinking benefit resulting in a smaller size per watt. Durable 250 Type resistors are fully welded and coated with lead free vitreous enamel.

FEATURES

- Small size-to-power ratio.
- Stackable
- Integral mounting bracket conducts heat to mounting surface.
- Low profile for use in equipment where space is limited.
- All-welded construction.
- RoHS compliant product available. Add "E" suffix to part number to specify.

SPECIFICATIONS

Material

Coating: Lead free vitreous enamel.
Core: Ceramic.
Terminals: Tinned lug with hole.
Derating: Linearly from 100\% @ $+25^{\circ} \mathrm{C}$ to 0% @ $+350^{\circ} \mathrm{C}$.

Electrical

Tolerance: $\pm 5 \%$ (J)
Power rating: Based on mounting a single resistor on a metal surface measuring 10 " (254 mm) square by 0.04 " (1.016 mm) thick. Reduce rating by 15% when mounting on non-metallic surface.
Overload: 10x rated wattage for 5 seconds if max. voltage is not exceeded.
Temperature coefficient:
1 to $20 \Omega: \pm 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Over 202: $\pm 260 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dielectric withstanding voltage: 500 VAC: 10 and 20 watt rating. 1000 VAC: 30,40 and 55 watt rating (measured from lug to mounting bracket)
To calculate max. amps:
use the formula $\sqrt{ } P / R$

ank $=$ Vitreous	$F=1 \%$	$1 R 0=1 \Omega$
$C=$ Centohm	$H=3 \%$	$250=250 \Omega$
$S=$ Silicone	$J=5 \%$	$1 K 0=1,000 \Omega$
	$K=10 \%$	$25 K=25,000 \Omega$

MADE-TO-ORDER PARTS

*Reference dimension only; varies according to resistance value.

Note: When resistors are stacked, use washers or spacers as required to insure clearance and improve power dissipation.

			Dimensions (in. /mm) Length L			Max. Sength A
Voltage ${ }^{\star}$						

Adjustable versions available. Consult Ohmite.
Other sizes available. Consult Ohmite.
Also available in low cost Centohm or Silicone coating. Consult Ohmite.

* Maximum Voltage is based on Ohm's Law $\left[\mathrm{V}=\sqrt{\mathrm{P}^{*} \mathrm{R}}\right]$ as limited by the resistance value of specified product

- Terminals suitable for soldering or bolt connection.
- High wattage applications.
- Rugged lead free vitreous enamel coating.
- Flame resistant coating.
- All-welded construction.
- RoHS compliant product available. Add "E" suffix to part number to specify.

Series	Wattage	Ohms	Dimensions (in. / mm)			Core Code	Voltage	Standard Terminal
L12	12	0.1-51K	1.75 / 44.4	0.313 / 7.94	$0.188 / 4.76$	D	565	57
L25	25	0.15-100K	2.0 / 50.8	0.562 / 14.3	0.313 / 7.94	K	625	40
L50	50	0.38-260K	4.0 / 101.6	0.562 / 14.3	0.313 / 7.94	K	1625	40
L100	100	0.23-101K	6.5 / 165.1	0.750 / 19.1	$0.50 / 12.7$	M	2845	40
L175	175	0.13-101K	8.5 / 215.9	1.125 / 28.6	0.75 / 19.1	P	3595	46
L225	225	0.16-129K	10.5 / 266.7	1.125 / 28.6	0.75 / 19.1	P	4595	46
L500	500	0.38-218K	12.0 / 304.8	2.50 / 63.5	1.75 / 44.5	S	4970	45
L1000	1000	0.69-392K	20.0 / 508.0	2.50 / 63.5	1.75 / 44.5	S	8900	45
Non-Inductive versions available; Other sizes available; Also available in low cost Centohm or Silicone coating; Consult Ohmite. * Maximum Voltage is based on Ohm's Law $\left[V=\sqrt{P^{\star} R}\right]$ as limited by the resistance value of specified product								

Select 270 Type fixed resistors for applications requiring wattage ratings from 12 to 1000 watts.
The 270 Type resistors are equipped with lug terminals suitable for soldering or sturdy bolt connection. When secure mounting is required, the hollow core of these resistors permit fastening with spring-type brackets, thru bolts or thru bolts with slotted-steel brackets.

Suitable for rugged applications, the 270 Type resistors feature all-welded construction and durable lead free vitreous enamel coating. Mounting brackets not included with resistors.

Power limitations for high resistance values: When resistance exceeds the resistance values listed, derate the Power Rating by 25% to improve reliability:
Power Resistance No power rating value derating 12W 3,900 necessary 25W 12,000 \quad for ratings 50W 35,000 \quad higher than 100W 75,000 100W.

Corrib ${ }^{\circledR}$ resistors are ideal for applications involving high currents at very low resis－ tance values－as low as 0.1Ω for the 300 Watt unit．These large，heavy－duty resistors are designed to withstand frequent start－stop cycles characteristic of motor starting，dynamic braking and other similar appli－ cations．Special order units are available to accommodate up to 1500 watts．

Corribs ${ }^{\circledR}$ are manufactured with corrugated resistive wire． To accelerate cooling，the wire is securely fused to the ceram－ ic core by the protective vitre－ ous enamel coating to improve durability．Corrib resistors are hollow－core units which can be securely fastened to chassis surfaces with thru bolts and brackets．

FEATURES
－Also available in low cost Centohm or Silicone coating Consult Ohmite．
－Ribbed construction aids in rapid cooling．
－Designed for equipment requiring low resistance loads at low ohmic values and high current capacity．
－Especially constructed for motor starting，dynamic braking，etc．
－RoHS compliant product available．Add＂E＂suffix to part number to specify．

SPECIFICATIONS

Material

Coating：Lead free vitreous enamel except for extreme low resistance 35 watt models，and very large models（ 1000 watts and up），which are supplied in Silicone Ceramic．
Core：Tubular Ceramic．
Terminals：Tinned lug with hole．
Adjustable Lug：Supplied with adjustable 300 watt models．Part No．1974－A or 1974－B．

Electrical

Tolerance：$\pm 10 \%$（K）
Power rating：Based on $25^{\circ} \mathrm{C}$ free air rating．
Derating：Linearly from 100%＠$+25^{\circ} \mathrm{C}$ to 0% ＠$+400^{\circ} \mathrm{C}$ ．
Overload： 10 times rated wattage for 5 seconds．

Temperature coefficient：

 $\pm 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．Dielectric withstanding voltage： 1000 VAC measured from termi－ nal to mounting bracket．
To calculate max．amps：use the formula $\sqrt{P / R}$

MADE－TO－ORDER PARTS

Fixed

 35 watt
280 Series

Corrib＊Fixed and Adjustable Vitreous Enamel Power

Fixed／Adjustable

300 watt＊

0.75 in．
19.05 mm
＊for values over 0.16Ω ，terminal dimensions same as 35 watt at above．

RESISTOR HARDWARE

Thru Bolts Mounting Brackets for 300 Watt Corrib

Includes 2 each bracket，bolt， washers（centering，mica，lock） and nut．Note：Single unit mount－ ing contains 1 each bolt and nut； 2 each all Washers．

		Mounting No．of Derating Resistors \％	
6110－81／2	6126－P－81／2	1	100\％
－	6127－P－81／2	2	83\％
－	6128－P－81／2	3	80\％
－	6129－P－81／2	4	80\％

Lugs for 300 Watt Adjustable Corrib

Part No．	Resis－ tance	Part No．	Resis－ tance
1974－A	0.40	1974－B	0.10
1／16 wire	0.50	$1 / 8$ wire	0.12
	0.63		0.16
	1.00		0.20
	1.50		0.25
	1.60		0.31
	2.00		0.80
	2.50		1.20
	3.10		
	4.00		
	5.00		
	6.30		
	8.00		
	10.00		
	12.00		
	16.00		
	20.00		
	25.00		
	30.00		
	48.00		
	50.00		

StANDARD PART NUMBERS FOR 280 SERIES

		Watta				Wattag				Other Av	le Sizes	List）					
＠		ゅ ¢	응			¢్ల ¢్ల		Prefix＊	Wattage	Core Length	Core 0．D．	Min．Ohms	Max．Ohms				
$\overline{\bar{N}}$	Part No．		$\frac{0.0}{\sqrt{5}}$	$\underset{N}{\pi}$	Part No．			C90	90	4.0 ＂	0．563＂	0.021	12				
읕	Prefix＞	다 당	응	．	Prefix＞	는 응	응	C100	100	3.5 ＂	0.75 ＂	0.021	11				
응	Suffix \downarrow	ర్ర		¢	Suffix \downarrow	ర్ర	尔或	C110	110	5.0 ＂	0.563 ＂	0.029	16				
0.02	R02E			0.8	R80E		\checkmark	C135	135	6.0 ＂	0.563 ＂	0.028	21				
0.04	R04E			1.0	－1R0E	\checkmark	\checkmark	C150	150	5.0 ＂	1．0＂	0.043	27				
0.06	R06E			1.2	1R2E	\checkmark		C160	160	6.0 ＂	0.75 ＂	0.038	26				
0.08	R08E			1.25	－1R25E			C180	180	6.5 ＂	0.75 ＂	0.031	29				
0.1	R10E	\checkmark	\checkmark	1.6	1R6E	\checkmark	\checkmark	C190	190	6.0 ＂	1．0＂	0.056	35				
0.12	R12E	\checkmark	\checkmark	2.0	2ROE	\checkmark	\checkmark	C215	215	7．0＂	1.0 ＂	0.068	43				
0.15	R15E			2.5	2R5E	\checkmark	\checkmark	C220	220	6.0 ＂	$1.125^{\prime \prime}$	0.063	39				
0.16	R16E		\checkmark	3.1	3R1E	\checkmark	\checkmark	C270	270	5.0 ＂	1．5＂	0.065	41				
0.2	R20E	\checkmark	\checkmark	4.0	4ROE	\checkmark	\checkmark	C375	375	10.5 ＂	1.125 ＂	0.130	80				
0.25	R25E	\checkmark	\checkmark	5.0	5R0E	\checkmark	\checkmark	C500	500	10．5＂	1.625 ＂	0.190	117				
0.3	R30E			6.3	6R3E	\checkmark	\checkmark	C750	750	12．0＂	2．5＂	0.310	198				
0.31	R31E	\checkmark	\checkmark	8.0	8ROE	\checkmark	\checkmark	C1000	1000	15.0 ＂	2.5 ＂	0.410	258				
0.4	R40E	\checkmark	\checkmark	10.0	－10RE	\checkmark	\checkmark	C1500	1500	20.0 ＂	2.5 ＂	0.560	358				
0.5	R50E	$\checkmark \checkmark$		$\begin{aligned} & 12.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 12RE } \\ -16 R E \\ \hline \end{array}$	$\stackrel{v}{v}$	\checkmark	＊Substitute＂C＂in prefix with ＂E＂for adjustable versions			＝Standard values；check availability using the worldwide inventory						
0.6	R60E			\checkmark													
0.63 R63E		$\checkmark \checkmark$			20.0	20RE	$\checkmark \checkmark$		search at www．ohmite．com								
		100.0	－100E														

Mounting Hardware
 See ohmite.com for pictoral views

For 200, 210, 270 and 280 Series

THRU-BOLTS AND MOUNTING BRACKETS
Sturdy plated steel brackets, along with thru-bolts, centering washers and insulating washers (included), allow for secure mounting of 210 type and 270 type resistors. Mounting brackets are available in either slotted (one with end-slot/one with side-slot) or elongated styles.

MOUNTING BRACKETS
Brackets fit inside cores of 200, 210 and 270 type resistors and remain in place by spring tension. Standard brackets are plated steel and have no suffix to part number. Spring steel brackets are indicated with an " S " suffix following part
$\left.\begin{array}{ccccc}\begin{array}{c}\text { number } \\ \text { nurt number } \\ \text { Standard }\end{array} & \text { Spring steel }\end{array} \begin{array}{c}\text { Mtg screw } \\ \text { size (max.) }\end{array} \begin{array}{c}\text { For resistors } \\ \text { (power ratings) }\end{array}\right]$

THRUBOLTS

Thru-Bolts, with centering mica insulating washers, permit perpendicular mounting of 200, 210 and 270 type resistors to panels up to 0.25 " thick.

Part No.	Bolt size Length	No.	For resistors (power rating)
* 7PA5	1.75"	8	8 watt
$\pm 7 \mathrm{PA} 10$	2.5 "	8	12 watt
*7PA20	2.75 "	8	20 watt
± 7 7PA25	2.75 "	10	25 watt
\pm 7PA50	4.75"	10	50 watt
*7PA75	6.75 "	10	75 watt
$\pm 7 \mathrm{PA} 100$	7.313"	10	100 watt
± 7 7PA160	9.5 "	0.25 "	175 watt
$\pm 7 \mathrm{PA} 200$	11.5"	0.25 "	225 watt

WASHERS
Metal Centering

Part No.	Diameter		For max.	For resistors
Outer	Inner	For screw size	(power ratings)	
± 6000	0.563 "	0.190	$\# 10$	$25,50,75$ watt
± 6001	$0.75 "$	0.190	$\# 10$	100 watt
± 6003	$1.125 "$	0.250	$0.25 "$	175,225 watt

Mica insulating

| Part No. | Outer | | $\begin{array}{c}\text { Diameter } \\ \text { Inner }\end{array}$ |
| :---: | :--- | :--- | :---: | \(\left.\begin{array}{c}For resistors

(power ratings)\end{array}\right]\)

ADJUSTABLE LUGS FOR 210 SERIES

One standard screwdriver type adjustable lug is supplied with each unit.
Two types of lugs can be ordered separately: standard or with a silver contact button; both types are available with a screwdriver type lug.

Resistor core diam. (in. $/ \mathbf{m m}$)	Standard part numbers Standard	
$0.313 / 7.94$	$\mathbf{~ S i l v e r}$	
$0.563 / 14.3$	± 2115	$\mathbf{* 2 1 1 6}$
$0.750 / 19.05$	± 2125	$\mathbf{\sim} 2123$
$1.125 / 28.58$	$\boldsymbol{\vee} 2133$	$\mathbf{* 2 1 2 7}$
		$\mathbf{*} 2135$

Double thumb screw Lug

(Part Number 2160) The double thumb screw adjustable lug permits easier adjustment and less chance of damage to resistance wire. Available for 1.125 " cores only.
$\pm=$ Most popular Standard values
$\boldsymbol{\checkmark}=$ Standard values
$\boldsymbol{*}=$ Non-Standard values subject to minimum handling charge per item

TYPE 57

TYPE 40 AND $40 A$

TYPE 46 AND 46 A

TYPE 535

TYPE 47 AND 48

TYPE 48 R

TYPE 58

TYPE 538

TYPE 126 AND $126 R$

OTHER TERMINALS

Type 49
.250 (6.35 mm) wide x 0.313 (7.950 mm) .166 (4.217mm) dia. hole. Solder coated.

Type 51
.125 (3.175mm) wide x height as specified. 0.072 (1.829 mm) hole. Solder coated.

Type 68
.188 (4.775mm) wide x 0.531 (13.488mm) high. Solder coated.

Type 52
For "wire wrap" (Keller, Gardner-Denver T.M.)

Type 69
.125 (3.175 mm) wide x 0.375 (9.525 mm) high. Solder coated.

Type 50
Untinned lug intended for welded connection. 0.063 (1.600mm) x height as specified.

> Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

Resistor Terminals for Tubular Cores

TERMINALDIMENSIONS

Terminal Type	W		H		T		P		Core Diameter Range	
	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	
40, 40A	0.25 ± 0.031	(6.35 $\pm 0.794)$	0.563 ± 0.031	(14.3 ± 0.794)	min 0.016	(0.407)	0.166 ± 0.015	(4.217 $\pm 0.381)$	0.313-1.125	(7.95-28.575)
44, 44A	0.5 ± 0.031	(12.7 ± 0.794)	0.750 ± 0.031	(19.05 $\pm 0.794)$	$\min 0.032$	(8.13)	$0.265+0.015 /-0.006$	$(6.731+0.381 /-0.153)$	0.75-1.125	(19.05-28.575)
45, 45A, 45B	0.5 ± 0.031	(12.7 ± 0.794)	0.750 ± 0.031	(19.05 $\pm 0.794)$	$\min 0.032$	(8.13)	$0.196+0.015 /-0.006$	$(4.979+0.381 /-0.153)$	0.75-1.125	(19.05-28.575)
46, 46A	0.375 ± 0.031	(9.525 ± 0.794)	0.625 ± 0.031	(15.875 ± 0.794)	$\min 0.032$	(8.13)	$0.173+0.015 /-0.005$	$(4.394+0.381 /-0.127)$	0.563-1.50	(14.3-38.1)
47, 48, 48R	0.125 ± 0.031	(3.175 $\pm 0.794)$	$0.188+0.094 /-0$	(4.775+2.38/-0)	N/A		N/A		0.0210-0.563	(5.25-14.3)
57	0.188 ± 0.031	(4.763 ± 0.794)	$\begin{gathered} 0.438 \\ +0.047 /-0.031 \end{gathered}$	$\begin{gathered} \hline(11.113 \\ +1.191 /-0.794) \end{gathered}$	$\min 0.016$	(0.407)	N/A		0.25-0.75	(6.35-19.05)
58	0.125 ± 0.031	(3.175 ± 0.794)	$0.188+0.094 /-0$	(4.775+2.38/-0)	N/A		N/A		0.0210-0.563	(5.25-14.3)
126, 126R	0.125 ± 0.031	(3.175 $\pm 0.794)$	$0.188+0.094 /-0$	(4.775+2.38/-0)	N/A		N/A		0.313-1.125	(7.95-28.575)
532	0.188 ± 0.031	(4.763 ± 0.794)	$\begin{gathered} 0.469 \\ +0.063 /-0.031 \end{gathered}$	$\begin{gathered} (11.906 \\ +1.588 /-0.794) \\ \hline \end{gathered}$	0.020	(0.508)	0.063	(1.588)	0.313-1.125	(7.95-28.575)
535	0.25 ± 0.031	(6.35 $\pm 0.794)$	max 0.875	(22.225)	0.032	(8.13)	0.065	(1.651)	0.313-2.5	(7.95-63.5)
538	0.25 ± 0.031	(6.35 $\pm 0.794)$	max 0.844	(21.438)	0.032	(8.13)	0.065	(1.651)	0.313-2.5	(7.95-63.5)

40A- Has screw \#6-32 x. 5 with 2 nuts and washers
$44 A$ - Has screw $20 \times .625$ with 2 nuts and washers
45A- Has screw \#8-32 x . 625 with 2 nuts and washers
45B-Has screw \#10-32 x . 625 with 2 nuts and washers
46A-Has screw \#8-32 x . 625 with 2 nuts and washers
EDGEDISTANCE-DIMENSION"E"
Core O.D.
in. $m m$ in. $m m$
$\begin{array}{lllllllllllllllllllllllllllllllllll}\text { Terminals } & .250 & 6.350 & .313 & 7.938 & .438 & 11.113 & .563 & 14.288 & .750 & 19.050 & 1.00 & 25.40 & 1.125 & 28.575 & 1.500 & 38.100 & 1.625 & 41.275 & 2.500 & 63.500\end{array}$
40-40A-49-50-
$\begin{array}{lllllllllllllllllllllllllllll}57-68-69-126- & .031 & .794 & .094 & 2.381 & .094 & 2.381 & .094 & 2.381 & .125 & 3.175 & .156 & 3.969 & .219 & 5.556 & - & - & - & - & - & -\end{array}$
126R-532

45B-46-46A

| $535-538$ | - | - | .125 | 3.175 | .125 | 3.175 | .125 | 3.175 | .125 | 3.175 | .156 | 3.969 | .219 | 5.556 | .250 | 6.350 | .250 | 6.350 | .500 | 12.700 |
| :--- |

Dimension "E" can be varied and is often reduced for cores $2.00(50.80 \mathrm{~mm})$ or less in length or sometimes increased for greater leakage distance to ground. Tolerance on " E " is ± 0.016 (.397mm) up to 0.125 (3.175mm) and ± 0.063 (1.588 mm) above.

TYPE 140

For Cores 0.438 (11.113mm) to 1.125 (28.575 mm) O.D.

Ferrule				Catalog No.	
Diameter					
In.	$\boldsymbol{m m}$	Ln.	$\boldsymbol{m m}$	No	
Washer	With				
Washer					

* Up thru 0.563 (14.288mm) D core.
†Up thru 0.750 (19.050 mm)

TYPE 141

Ferrule			Catalog		Core	
Diameter	Lenth	No.	O.D.			
In.	$\mathbf{m m}$	In.	$\mathbf{m m}$		In.	mm
.625	15.875	.625	15.875	$141 / 10$.563	14.288
.813	20.638	.688	17.463	$141 / 13$.750	19.050
1.062	26.988	.688	17.463	$141 / 17$	1.000	25.400
1.188	30.163	.688	17.463	$141 / 19$	1.125	28.575

Ferrules are brass, natural finish.
TYPE 63
Cores 0.563 (14.288mm) to 0.750 (19.050mm) O.D.--- Cat No. 63/12
Cores 1.000 (25.400mm) to 1.125 (28.575mm) O.D --- Cat No. 63/18

Cat. No.	${ }_{31} \mathbf{A}_{(.794)}$		$\begin{gathered} \text { B } \\ \pm .031(.794) \end{gathered}$		$\begin{gathered} \text { C } \\ \pm .031(.794) \end{gathered}$		$\underset{\text { (Min.) }}{\mathbf{D}}$	
	In.	mm	In.	mm	In.	mm	In.	mm
63/12	. 781	19.844	. 438	11.113	750	19.050	. 250	6.350
63/18	. 875	22.225	. 813	20.638	1.125	28.575	. 313	7.938

F E A T URES

- High precision
- All welded construction
- Molded thermosetting plastic bobbin
- Wide ohmic range combined with tight tolerance
- Excellent long-term stability
- Inherent low temperature coefficient
- Extremely low Thermal EMF
- Low voltage coefficient
- Low noise

SPECIFICATIONS

Minimum Values: 0.1Ω for $\pm 1 \%$ and $\pm 0.5 \% ; 10 \Omega$ for $\pm 0.1 \%$ and tighter
Resistance Tolerance: $\pm 0.005 \%$, $\pm 0.01 \%, \pm 0.02 \%, \pm 0.05 \%$, $\pm 0.1 \%, \pm 0.5 \%$, and $\pm 1 \%$, depending on style and value
Temperature Coefficient (TCR): $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ standard for 10Ω and above. Higher TC's on low ohmic values. TC match to $\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. High TC's upto $+6000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are available
Standard temperature range: $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Working temperature range: $-60^{\circ} \mathrm{C}$ to $+145^{\circ} \mathrm{C}$

C ONSTRUCTION
All Welded Construction: The
combination of all welded construction and compatible materials provide the most reliable means of interconnects possible.

Butt Weld of Tab to Terminal:

 A tab material of 800 ohm alloy (the same as the resistance wire) is butt welded to the terminal and molded deep into the resistor bobbin. This design parameter assures the least possible DC transients due to thermal EMF.Bobbin Design: The ratio of the height of the Pi wall to the width of the Pi and to the diameter of the bobbin mandrel are critical to the basic stability of a wirewound resistor. These parameters are optimized for each wire size, wattage size and range of resistor values.
Encapsulation Material: Both the bobbin and the final encapsulation material are thermosetting alkyd polyester. The resulting resistor is virtually a homogeneous mass with an identical coefficient of expansion which is unaffected by the most violent of temperature cycling. All types are unaffected by application of solvents.

Terminal Materials:

 The standard terminal material is hot solder dipped copper (C5N). Other available materials are bare nickel (N1N) and gold plated nickel (N2N).

Our friendly Customer Service team can be reached at $\mathbf{8 6 6 - 9}-0 \mathrm{HMITE}$

High Precision Welded Axial and Radial

Axial

Model	Dim. C	Dim. D
101 P	$0.150 / 3.81$	$0.110 / 2.79$
102P	$0.125 / 3.18$	$0.125 / 3.18$
$203 P \mathrm{C}$	$0.150 / 3.81$	-
203PA	$0.200 / 5.08$	-
305PA	$0.200 / 5.08$	-
505PA	$0.300 / 7.62$	-

ULTRONIX

Type	$\begin{aligned} & \text { Po } \\ & \text { Max. } \\ & \text { Ohms } \end{aligned}$	ower Rating @125응 (Watts)	Max. Volts	Overall Dimensions ($\pm .020 \mathrm{in} . / \pm .508 \mathrm{~mm}$)		AWG	Lead Diam.
123A	111k	0.05	150	$0.100 / 2.54$	$0.230 / 5.84$	24*	$0.020 / 0.508$
118A	192k	0.05	150	$0.130 / 3.30$	$0.180 / 4.57$	26	$0.016 / 0.406$
122A	199k	0.05	150	$0.123 / 3.12$	$0.218 / 5.54$	24	$0.020 / 0.508$
102A	334k	0.10	150	$0.110 / 2.79$	$0.250 / 6.35$	24	$0.020 / 0.508$
102AL	334k	0.10	150	$0.130 / 3.30$	0.313 / 7.95	24	$0.020 / 0.508$
101A	410k	0.10	300	$0.130 / 3.30$	$0.375 / 9.53$	22*	$0.026 / 0.660$
153A	435k	0.10		$0.150 / 3.81$	$0.245 / 6.22$	22	$0.026 / 0.660$
103A	633k	0.10	150	$0.150 / 3.81$	$0.300 / 7.62$	22	$0.026 / 0.660$
135A	750k	0.10		0.160 / 4.06	$0.500 / 12.70$	22	$0.026 / 0.660$
105A	820k	0.125		$0.150 / 3.81$	$0.310 / 7.87$	22	$0.026 / 0.660$
184A	820k	0.125	300	$0.187 / 4.75$	$0.375 / 9.53$	22	$0.026 / 0.660$
185A*	961k	0.125	300	$0.187 / 4.75$	$0.500 / 12.70$	22	$0.026 / 0.660$
202A	968k	0.25	200	0.250 / 6.35	0.310 / 7.87	22	$0.026 / 0.660$
204A	1.42 M	0.25		0.250 / 6.35	$0.375 / 9.53$	20	$0.032 / 0.813$
203A	1.7 M	0.25	200	0.250 / 6.35	0.343 / 8.71	20	$0.032 / 0.813$
205A*	1.93 M	0.33	400	$0.250 / 6.35$	$0.500 / 12.70$	20^{*}	$0.032 / 0.813$
207A*	3.0 M	0.50	800	0.250 / 6.35	$0.750 / 19.05$	20*	$0.032 / 0.813$
308A	3.0 M	0.60	800	0.312 / 7.93	$0.810 / 20.57$	20	$0.032 / 0.813$
210A*	4.10 M	0.50	800	$0.250 / 6.35$	$1.00 / 25.40$	20	$0.032 / 0.813$
307A	5.63 M	0.60		0.375 / 9.53	$0.750 / 19.05$	20	$0.032 / 0.813$
310A	7.68 M	1.00	800	0.375 / 9.53	1.00 / 25.40	20	$0.032 / 0.813$
505A	10 M	1.00		$0.500 / 12.70$	$0.500 / 12.70$	20	$0.032 / 0.813$
510A*	24 M	1.25	800	$0.500 / 12.70$	$1.00 / 25.40$	20	$0.032 / 0.813$
515A*	35 M	1.50	1200	$0.500 / 12.70$	1.50 / 38.10	20	$0.032 / 0.813$
517A	43 M	1.75	1200	$0.500 / 12.70$	1.75 / 44.45	20	$0.032 / 0.813$
$520 A^{*}$	43 M	2.00	1200	$0.500 / 12.70$	$2.00 / 50.8$	20	$0.032 / 0.813$
101P	453k	0.125	150	$0.300 / 7.62$	0.320 / 8.13	22	$0.026 / 0.660$
102P	821k	0.125	150	0.250 / 6.35	$0.250 / 6.35$	22*	$0.026 / 0.660$
203PC	1.59 M	0.25	150	0.250 / 7.92	0.312 / 7.93	22	0.026 / 0.660
203PA	1.48 M	0.25	150	0.270 / 6.86	$0.320 / 8.13$	22	$0.026 / 0.660$
305PA	3.3 M	0.50		0.375 / 9.53	$0.500 / 12.70$	20	$0.032 / 0.813$
505PA	9.5 M	1.00		$0.500 / 12.70$	$0.500 / 12.70$	20	$0.032 / 0.813$
*Available in hermetically sealed							

HSP Series

Hermetically Sealed Precision Ultra-High Stability Axial Terminals

FEATURES

- Accuracy to $\pm 0.001 \%$ absolute
- Shelf life to 10 ppm/year
- Temperature coefficient to $\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C},-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
- Low voltage coefficient
- Low noise
- Extremely low thermal EMF
- Available in 4-terminal on HS500 series
- Oil-filled version available

Part Marking:

- Ohmite
- Model
- Resistance value
- Resistance tolerance
- Date code

P Series

Epoxy Molded Precision Wirewound Axial Terminals

Series	Wattage	Diam. (in./mm)	Length (in./mm)	Lead ga.
PE	0.125	$0.125 / 3.18$	$0.250 / 6.35$	22
PF	0.250	$0.187 / 4.75$	$0.375 / 9.53$	22
PA	0.500	$0.250 / 6.35$	$0.500 / 12.7$	22
PG	0.750	$0.250 / 6.35$	$0.750 / 19.1$	20
PB	0.900	$0.375 / 9.53$	$1.000 / 25.4$	20
PC	1.500	$0.375 / 9.53$	$1.000 / 25.4$	20
PD	2.000	$0.500 / 12.7$	$1.500 / 38.1$	20

ORDERING INFORMATION

Ohmite's P Series Epoxy molded Precision Wirewound Resistors are designed to meet the exacting requirements of Military Specification MIL-R-93. The P Series offers high stability and low Temperature Coefficient of Resistance (TCR). These resistors offer tolerances as accurate as $\pm 0.005 \%$ and Temperature Coefficients of Resistance (TCR) as low as $\pm 2 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ in a wide range of resistance values.

F E A T URES

- Wide Range of Precise

Tolerances ($\pm 0.005 \%$ to $\pm 1 \%$).

- Low Inductance.
- RoHS Compliant.
- Axial configuration convenient for PCB and hard wiring applications.

DERATING

P Series Resistors must be derated for tolerances below 0.1% and for elevated ambient temperatures. Choose the curve corresponding to the desired tolerance. Determine the maximum allowed percentage of rated power from the graph based on the maximum ambient temperature expected during use.

SPECIFICATIONS

Material
Terminals: Tinned Copper
Encapsulation: Silicone Molding Compound
Electrical
Resistance range: 1Ω to $15 \mathrm{M} \Omega$
Standard Tolerances: 0.005%, $0.01 \%, 0.02 \%, 0.05 \%, 0.1 \%$, $0.25 \%, 0.5 \%$, and 1%
Temperature Coefficient of Resistance, $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$: 1Ω to $<10 \Omega$: $\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ 10Ω to $<100 \Omega$: $\pm 15 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ $\geq 100 \Omega$: $\pm 10 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range: $-65^{\circ} \mathrm{C}$ to $145^{\circ} \mathrm{C}$
Temperature Compensating TCR: from +80 through +6000 PPM
TCR Matching: to $\pm 0.5 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$

The TWW／TWM series radial terminal power resistors offer significant board space savings over axial terminal products． Generated heat is also kept away from the circuit board．

They are recommended for commercial applications requiring low cost．

FEATURES
－Economical Commercial Grade for general purpose use
－Wirewound and Metal Oxide construction
－Wide resistance range
－Flameproof inorganic construc－ tion

DERATING

SPECIFICATIONS

Material

Housing：Ceramic
Core：Fiberglass or metal oxide
Filling：Cement based
Electrical
Tolerance：5\％standard
Temperature coeff．：
$.01-20 \Omega \pm 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$20-10 \Omega \pm 350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dielectric withstanding voltage： 1，000VAC
Short time overload：
TWW：10x rated power for 5 sec ．
TWM： 5 x rated power for 5 sec ．
Operating Temp．：$-55^{\circ} \mathrm{C}$ to $275^{\circ} \mathrm{C}$
Storage Temp．： $6^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$

Ceramic Housed Radial Terminal Power

Series	Wattage	Ohms	Height（in．／mm）	Voltage	Element
TWW3			$.01-39$	$0.98 / 25$	250
Wire					
TWW5	5	$.01-47$	$0.98 / 25$	350	Wire
TWW10	10	$.04-990$	$1.97 / 50$	750	Wire
TWM3	3	$43-50 \mathrm{~K}$	$0.98 / 25$	250	Metal oxide
TWM5	5	$51-50 \mathrm{~K}$	$0.98 / 25$	350	Metal oxide
TWM10	10	$1000-50 \mathrm{~K}$	$1.97 / 50$	750	Metal oxide

Standard part numbers for tww series

				$\begin{aligned} & \text { og } \\ & \text { 兴 } \\ & \text { 曾 } \\ & \hline \end{aligned}$	Part No． Prefix＞ Suffix V	
0.01	RO1E $\downarrow \downarrow$	1.5	1R5E \downarrow－	43	43RE	$\checkmark \checkmark$
	RO2E \downarrow v	2.0	2ROE \downarrow v \downarrow	47	－ 47 RE	
0.03	Ro3E \downarrow v	2.7	2RTE \downarrow ひ	56	－56RE	\checkmark
0.04	RO4E \downarrow v	3.0	3ROE $v v$ v	68	68RE	\checkmark
0.05	R05E \downarrow く	3.3	ЗR3E $v \stackrel{ }{ }$	75	75RE	\checkmark
0.10	R10E \downarrow v \downarrow	3.9	3R9E $v v v$	82	82RE	v
	－R15E \downarrow く	4.3	4R3E \downarrow ひ	100	－100E	\checkmark
0.20	R20E \downarrow v	4.7	－ARTE \downarrow v	150	－150E	\checkmark
0.27	R27E \downarrow v	5.6	5R6E \downarrow v \downarrow	200	200E	\checkmark
0.30	R30E \downarrow v \downarrow	6.8	6R8E \downarrow v v	270	270 E	\checkmark
0.33	R33E \downarrow v \downarrow	7.5	7R5E \downarrow し	300	300E	\checkmark
	R39E \downarrow v	8.2	8R2E \downarrow ひ	330	－330E	\checkmark
0.43	R43E \downarrow く	10	－10RE \downarrow v	390	－390E	\checkmark
0.47	R47E \downarrow く	15	－15RE \downarrow し \downarrow	430	－430E	\checkmark
0.56	R56E \downarrow v	20	20RE \downarrow v	470	470 E	\checkmark
0.68	R68E \downarrow く ${ }^{\text {d }}$	27	27RE \downarrow こ	560	560E	\checkmark
	－75－R75E \downarrow く	30	30RE \downarrow レ	680	－680E	\checkmark
	－R82E \downarrow v	33	33RE $v \vee v$	750	－750E	v
1.0	1ROE \checkmark v v	39	39RE \downarrow v v	820	820E	\checkmark

Standard part numbers for twm series

	Wattage					Wattage		
			เs 으	$\stackrel{0}{0}$		∞		은
	Part No． Prefix Suffix ∇	\sum_{k}^{∞}		$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { 릉 } \end{aligned}$	Part No． Prefix $>$ Suffix ∇	\sum_{i}^{M}	$\sum_{i}^{i n}$	$\sum_{i}^{\text {ㅇ }}$
43	43RE	\checkmark		750	－750E	\checkmark	\checkmark	
47	－47RE	\checkmark		820	－820E	\checkmark	\checkmark	
56	56RE	\checkmark	\checkmark	1000	－1K0	\checkmark	\checkmark	\checkmark
68	－68RE	\checkmark	\checkmark	1500	－1K5	\checkmark	\checkmark	\checkmark
75	－75RE	\checkmark	\checkmark	2000	－2K0	\checkmark	\checkmark	\checkmark
82	82RE	\checkmark	\checkmark	2700	－2K7	\checkmark	\checkmark	\checkmark
100	－100E	\checkmark	\checkmark	3000	－3K0	\checkmark	\checkmark	\checkmark
150	－150E	\checkmark	\checkmark	3300	－3K3	\checkmark	\checkmark	\checkmark
200	－200E	\checkmark	\checkmark	3900	－3K9	\checkmark	\checkmark	\checkmark
270	－270E	\checkmark	\checkmark	4300	4K3	\checkmark	\checkmark	\checkmark
300	－300E	\checkmark	\checkmark	4700	－4K7	\checkmark	\checkmark	\checkmark
330	－330E	\checkmark	\checkmark	5600	－5K6	\checkmark	\checkmark	\checkmark
390	－390E	\checkmark	\checkmark	6800	－6K8	\checkmark	\checkmark	\checkmark
430	－430E	\checkmark	\checkmark	7500	－7K5	\checkmark	\checkmark	\checkmark
470	－470E	\checkmark	\checkmark	8200	－8K2	\checkmark	\checkmark	\checkmark
560	－560E	\checkmark	\checkmark	10000	－10K	\checkmark	\checkmark	\checkmark
680	－680E	\checkmark	\checkmark					

Check product availability at www．ohmite．com

Dimensions (in. / mm)							
Series	Wattage	Ohms	Length ($\pm 1 \mathrm{~mm}$)	Height ($\pm 1 \mathrm{~mm}$)	Width ($\pm 1 \mathrm{~mm}$)	Voltage	Element
TUW3	3	0.01-39	0.87 / 22	0.31/8	0.31/ 8	350	Wirewound
TUW5	5	0.01-47	0.87/22	0.35/9	$0.39 / 10$	350	Wirewound
TUW7	7	0.10-680	1.48 / 35	0.35/9	$0.39 / 10$	500	Wirewound
TUW10	1010	0.10-990	1.93/49	0.35/9	$0.39 / 10$	750	Wirewound
TUW15	1515	0.10-1000	1.93/49	.453/11.5	0.49 / 12.5	1000	Wirewound
TUM3	3	180-33K	0.87/22	0.31/8	0.31/ 8	350	Metal oxide
TUM5	5	220-50K	0.87/22	0.35/9	$0.39 / 10$	350	Metal oxide
TUM7	7	910-50K	1.48 / 35	0.35/9	$0.39 / 10$	500	Metal oxide
TUM10	1010	1000-50K	1.93/49	0.35/9	$0.39 / 10$	750	Metal oxide
TUM15	515	1100-150K	1.93/49	.453/11.5	0.49 / 12.5	1000	Metal oxide

The TUW/TUM Series resistors are our most economical power resistors. They are recommended for commercial applications where low cost is critical.

They are available in small standard packs for standard values, or bulk packaged for even lower costs.

FEATURES

- Economical Commercial Grade for general purpose use
- Wirewound and Metal Oxide construction
- Wide resistance range
- Flameproof inorganic construction
derating curve

S PECIFICATIONS
Material
Housing: Ceramic
Core: Fiberglass or metal oxide
Filling: Cement based

Electrical

Tolerance: 5\% standard
Temperature coeff.:
$0.01-20 \Omega \pm 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $20-150 \mathrm{~K} \Omega \pm 350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dielectric withstanding voltage: 1,000VAC
Short time overload
TUW: 10x rated power for 5 sec .
TUM: $5 x$ rated power for 5 sec.

STANDARD PART NUMBERS FOR TUW/TUM SERIES

STANDARD PART NUMBERS FOR TUW/TUM SERIES																									
	Part No. Prefix $>$ Suffix \mathbf{V}	m $\sum_{i}^{\text {m }}$		$\begin{aligned} & \text { attage } \\ & \sim \\ & \sim \\ & \stackrel{\rightharpoonup}{\sim} \\ & \sum_{\perp} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\text { n }}{1} \\ & \stackrel{\rightharpoonup}{10} \\ & \sum_{1}^{2} \end{aligned}$		Part No. Prefix $>$ Suffix ∇	๓ m	$\begin{gathered} \text { Wat } \\ \text { in } \\ \text { in } \\ i \end{gathered}$	$\begin{aligned} & \text { attage } \\ & \sim \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{aligned} & \text { je } \\ & \text { 은 } \\ & \text { 웅 } \\ & \stackrel{2}{\gtrless} \end{aligned}$	$\frac{10}{2}$	$\begin{aligned} & \text { OU } \\ & \text { N } \\ & \text { N } \\ & \text { 응 } \end{aligned}$	Part No. Prefix $>$ Suffix \boldsymbol{V}	๓ m	$\begin{aligned} & \text { Wat } \\ & \text { in } \\ & n_{D}^{n} \end{aligned}$				Part No. Prefix $>$ Suffix \boldsymbol{V}	∞ $\sum_{j}^{\stackrel{m}{\gtrless}}$		$\begin{aligned} & \text { attag } \\ & \stackrel{y}{*} \\ & \stackrel{\rightharpoonup}{\stackrel{2}{2}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$$	$\frac{10}{i_{1}^{n}}$
0.01	-R01E	\checkmark	\checkmark			1.0	1R0E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	33	33RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	680	680E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.01	R01E	\checkmark	\checkmark			1.5	- 1R5E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39	39RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	750	750 E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.02	R02E	\checkmark	\checkmark			2.0	-2R0E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	43	43RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	820	-820E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.04	R04E	\checkmark	\checkmark			2.7	2R7E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	47	47RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	1000	-1K0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.05	R05E	\checkmark	\checkmark			3.0	3R0E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	56	56RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	1500	-1K5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.10	R10E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	3.3	3R3E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	68	68RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	2000	2K0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.15	R15E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	3.9	3R9E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	75	75RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	2700	2K7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.20	R20E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	4.3	- 4R3E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	82	- 82RE	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	3000	3K0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.27	R27E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	4.7	4R7E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	100	-100E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	3300	3K3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.30	R30E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	5.6	5R6E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	150	-150E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	3900	3K9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.33	R33E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	6.8	6R8E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	200	200E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	4300	4K3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.39	R39E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	7.5	-7R5E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	270	270E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	4700	- 4K7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.43	R43E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	8.2	8R2E	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	300	300E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	5600	5K6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.47	R47E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	10	- 10RE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	330	330E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	6800	6K8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.56	R56E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	15	- 15RE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	390	390E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	7500	-7K5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.68	R68E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	20	20RE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	430	430E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	8200	-8K2	\checkmark	\checkmark	\checkmark	\checkmark	v
0.75	R75E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	27	-27RE	\checkmark	\checkmark	\checkmark	\checkmark		470	470E	\checkmark	\checkmark	$\checkmark \checkmark$		10000	-10K	\checkmark			\checkmark	\checkmark
0.82	R82E	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	30	30RE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	560	560E	\checkmark	\checkmark	$\checkmark \checkmark$								
Check product availability at WWW.ohmite.com Shaded area: change prefix to TUM																									

> Our Tech Center is open 10am to 2 pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

StANDARD PART NUMBERS FOR 30 SERIES

Part Number	Ohms	Power	Energy (J)	Fusing Energy (J)	Current to fuse (A)	Power to fuse (W)
33J1R0	1	3	12.70	53.26	23.93	572.60
33J5R0	5	3	6.25	26.20	10.03	502.96
33J10R	10	3	4.94	20.73	7.08	501.70
33J15R	15	3	4.66	19.55	5.95	531.47
33J20R	20	3	3.91	16.40	5.00	500.45
33J25R	25	3	3.07	12.89	4.20	441.79
33J30R	30	3	2.97	12.46	3.92	460.80
33J50R	50	3	2.43	10.20	2.97	440.68
33 J 100	100	3	1.92	8.07	2.10	439.58
35J1R5	1.5	5	76.55	321.19	40.32	2438.48
35J2R5	2.5	5	64.65	271.23	31.59	2494.75
35J7R5	7.5	5	37.66	158.01	16.90	2141.89
35J12R	12	5	37.90	158.99	14.20	2420.25
35J18R	18	5	28.80	120.84	11.13	2228.50
35J22R	22	5	27.48	115.29	10.03	2213.02
35J36R	36	5	22.78	95.59	7.86	2222.93
35J47R	47	5	23.22	97.42	7.08	2358.00
35J75R	75	5	18.77	78.77	5.55	2309.77
30J2R0	2	10	162.30	680.93	47.98	4603.79
30J4R7	4.7	10	150.86	632.92	33.88	5395.94
30J6R8	6.8	10	137.27	575.91	28.47	5513.41
30J15R	15	10	119.76	502.47	20.11	6065.77
30J27R	27	10	85.27	357.74	14.20	5445.56
30J33R	33	10	65.54	274.98	11.93	4700.40
30J50R	50	10	62.45	262.03	10.03	5029.59
30J82R	82	10	51.90	217.74	7.86	5063.34
30 J 100	100	10	49.41	207.28	7.08	5017.03
30 J 150	150	10	46.61	195.54	5.95	5314.71
825J1ROH	1	25	51.04	214.12	40.32	1625.65
825J5R0H	5	25	39.92	167.49	20.11	2021.92
825J10RH	10	25	31.58	132.50	14.20	2016.87
825J25RH	25	25	19.64	82.40	8.43	1776.01
825J36RH	36	25	17.79	74.62	7.08	1806.13
825J47RH	47	25	18.71	78.49	6.60	2049.57
825J75RH	75	25	14.66	61.49	5.00	1876.69
825J100H	100	25	12.29	51.56	4.20	1767.15
825J150H	150	25	11.59	48.64	3.53	1872.00
RH3R0DBR500J	0.5	3	12.93	54.25	31.59	498.95
RH3R0DB1R00J	1	3	10.23	42.91	22.31	497.70
RH3R0DB2R70J	2.7	3	6.87	28.82	13.24	473.33
RH3R0DB4R70J	4.7	3	5.87	24.63	10.03	472.78
RH3R0DB6R80J	6.8	3	5.34	22.41	8.43	483.07
RH3R0DB7R50J	7.5	3	4.75	19.91	7.86	463.11
RH3R0DB10R0J	10	3	3.98	16.70	6.60	436.08
RH3R0DB15R0J	15	3	3.75	15.75	5.55	461.95
RH3R0DB25R0J	25	3	3.07	12.89	4.20	441.79
RH3R0DB47R0J	47	3	2.28	9.59	2.97	414.24
RH3R0DB68R0J	68	3	2.08	8.72	2.49	423.26
RH3R0DB75R0J	75	3	2.29	9.62	2.49	466.83

RoHS compliant product available; Add "E" suffix to part number to specify.

Ohmite Manufacturing's family of High Energy Wirewound Resistors employ special winding techniques to maximize the effective joule rating of each resistor. Most wirewound resistors are wound with the objective of meeting the stated power (wattage) rating and keeping cost low through the use of automatic winding equipment. Typically, manufacturers will allow substitution of resistance wire,
depending on material availability. On tight tolerance wirewounds some type of abrasive adjustment to the resistance wire is often used to maximize production yields. Both of these procedures can adversely affect the joule rating and fusing current of a wirewound resistor, and this is often the reason that the manufacturer does not publish a fixed joule rating.

Ohmite High Energy

> Check product availability using the Worldwide Inventory Search at ohmite.com

Wirewounds are hand wound in order to maintain the tightest possible pitch (space between windings) and thereby maximize the mass of the resistive element. Since no wire substitutions are allowed, and no abrasive adjusting is permitted in this family, Ohmite can publish a fixed joule rating and fusing current for each part number in the series.

This technique can be applied to any wirewound
product. In order to provide the broadest selection of packaging, Ohmite has developed standard offerings in three different package types-axial, SMD, and heat sinkable. Other sizes and types can be quoted on request, such as tubular power resistors.

30J, 33J, 35J and 825J

Series: Non-inductive versions can also be supplied, along with the calculated joule rating, fusing current, and inductance.

Axial Terminal / Surface Mount / Heat Sinkable Packaging

RH3RODBxxxJ: 0.612 / 15.545

	Type	Watts	Tolerance	Voltage
33Jxxx	Axial	3	5%	200
35Jxxx	Axial	5	5%	460
30Jxxx	Axial	10	5%	1000
825JxxxH	Heat Sinkable	25	5%	520
RH3RODBxxXJ	Surface Mount	3	5%	200

High Energy Wirewound

Axial Terminal / Surface Mount /
 Heat Sinkable Packaging (continued)

PERFORMANCE GHARAGTERISICS

> To see the latest in resistor technology click on the "What's New" tab at ohmite.com

Powr-Rib ${ }^{\circledR}$ Edgewound Edgewound and Round Wire

DERATING

STANDARD PART NUMBERS								
Ohms		EDGEWOUND Part \#	Watts	Amps	Ohms	ROUNDWIRE Part \#	Watts	Amps
0.1	\checkmark	PFE5KR100E	1000	100	11	\checkmark PFR5K11R0E	757	8.3
0.12	*	PFE5KR120E	994	91	13	\checkmark PFR5K13R0E	750	7.6
0.14	\checkmark	PFE5KR140E	1100	89	17	\checkmark PFR5K17R0E	740	6.6
0.16	*	PFE5KR160E	973	78	20	\checkmark PFR5K20R0E	696	5.9
0.18	+	PFE5KR180E	1012	75	25	\checkmark PFR5K25R0E	650	5.1
0.22	\checkmark	PFE5KR220E	1017	68	$\boldsymbol{\nu}=$ Standard values * = Non-standard values subject to minimum handling charge per item.			
0.25		PFE5KR250E	992	63				
0.3		PFE5KR300E	975	57				
0.33		PFE5KR330E	962	54				
0.37	\checkmark	PFE5KR370E	925	50				
0.5		PFE5KR500E	1105	47				
0.6		PFE5KR600E	1109	43				
0.67		PFE5KR670E	1126	41				
0.75		PFE5KR750E	1141	39				
1	\checkmark	PFE5K1R00E	1089	33				
1.3		PFE5K1R30E	1093	29				
1.6		PFE5K1R60E	1082	26				
2.2		PFE5K2R20E	745	18.4				
2.8		PFE5K2R80E	744	16.3				
3.5	\checkmark	PFE5K3R50E	746	14.6		Check product availab	lity at	
4.5		PFE5K4R50E	726	12.7		www.ohmite	m	
5.4		PFE5K5R40E	752	11.8				
6.8		PFE5K6R80E	721	10.3				
8.5		PFE5K8R50E	751	9.4				

Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

PFEEDGEWOUND "POWR-RIB"ELEGTRIGAL INFORMATION

Size* (No. of Insulator-Sections Long)					STANDARD*5	6	7	8
		2	3	4				
Dimension A	in. mm	$\begin{gathered} 8.875 \\ (225.425) \end{gathered}$	$\begin{aligned} & 11.875 \\ & (30.163) \end{aligned}$	$\begin{gathered} 14.875 \\ (377.825) \end{gathered}$	$\begin{gathered} 17.875 \\ (454.025) \end{gathered}$	$\begin{aligned} & 20.875 \\ & (530.225) \end{aligned}$	$\begin{aligned} & 23.875 \\ & (606.425) \end{aligned}$	$\begin{gathered} 26.875 \\ (682.625) \end{gathered}$
Dimension B	in. mm	$\begin{gathered} 7.250 \\ (184.150) \end{gathered}$	$\begin{aligned} & 10.250 \\ & (31.750) \end{aligned}$	$\begin{gathered} 13.250 \\ (336.550) \end{gathered}$	$\begin{aligned} & 16.250 \\ & (412.75) \end{aligned}$	$\begin{gathered} 19.250 \\ (488.950) \end{gathered}$	$\begin{gathered} 22.250 \\ (565.150) \end{gathered}$	$\begin{gathered} 25.250 \\ (641.350) \end{gathered}$
	Max. Amps	Ohms						
100		. 033	. 057	. 080	. 100	. 120	. 140	. 160
91		. 040	. 070	. 100	. 120	. 140	. 160	. 180
89		. 046	. 078	. 110	. 140	. 170	. 200	. 230
78		. 052	. 088	. 120	. 160	. 190	. 220	. 250
75		. 060	. 100	. 140	. 180	. 210	. 250	. 300
68		. 070	. 120	. 180	. 220	. 260	. 300	. 340
63		. 080	. 130	. 190	. 250	. 300	. 350	. 400
57		. 100	. 160	. 230	. 300	. 360	. 420	. 480
54		. 110	. 180	. 250	. 330	. 400	. 470	. 540
50		. 120	. 200	. 280	. 370	. 450	. 530	. 610
47		. 170	. 280	. 380	. 500	. 600	. 700	. 800
43		. 210	. 330	. 460	. 600	. 720	. 850	. 980
41		. 230	. 360	. 510	. 670	. 800	. 930	1.06
39		. 260	. 420	. 580	. 750	. 900	1.05	1.20
33		. 350	. 560	. 770	1.00	1.20	1.40	1.60
29		. 450	. 730	1.00	1.30	1.50	1.75	2.00
26		. 560	. 900	1.20	1.60	1.90	2.20	2.50
18.4		. 690	1.20	1.70	2.20	2.70	3.10	3.50
16.3		. 880	1.50	2.20	2.80	3.40	4.00	4.60
14.6		1.10	1.90	2.70	3.50	4.30	5.10	5.90
12.7		1.40	2.40	3.50	4.50	5.50	6.50	7.50
11.8		1.70	2.90	4.20	5.40	6.60	7.80	9.00
10.3		2.10	3.70	5.30	6.80	8.30	9.80	11.3
9.4		2.70	4.60	6.50	8.50	10.40	12.3	14.2

$\left.\begin{array}{rrrrrrrr} & \text { PFR ROUND-WIRE "POWR-RIB"ELECTRICAL INFORMATION }\end{array}\right]$

[^0]
Check product availability using the Worldwide Inventory Search at ohmite.com

14984 Series

High Current Round Edgewound

STANDARD PART NUMBERS					
Ohmite Part Number	Continuous	Ohms	Watts	Ward Leonard Part Number	Westinghouse Style Number
76021-R118	160	0.118	3021	14984-10-01	1796207
76021-R157	140	0.157	3077	14984-10-03	1796206
76021-R171	130	0.171	2889	14984-10-04	31 D 2615 A 05
76021-R285	100	0.285	2850	14984-10-07	31D2614A03
Check product availability at www.ohmite.com					

These high current round edgewound resistors handle a variety of applications including dynamic braking, load banks, motor starting, and plugging. They are available in a variety of ohm and current ratings common to transit use.

A sturdy welded steel frame supports the refractory insulators. The frame is finished with a zinc chromate conversion for corrosion resistance. The ceramic insulators separate turns of the resistance elements from each other and the frame. The resistance element is a stainless steel strip, used for its corrosion resistance, negligible temperature coefficient, and Ohms per foot vs. current carrying capacity. The resistance element is created by edge-winding a stainless strip into a continuous coil of the proper length. Zinc plated terminals welded to the resistance element complete the assembly.

Contact us with your specific needs.

SPECIFICATIONS
Electrical
Current Rating: Continuous current ratings are based on a maximum temperature rise of $375^{\circ} \mathrm{C}$ as specified by NEMA Industrial Control Standards for bare element resistors.
Wattage Rating: Can be found from $I^{2} R$.
Resistance Tolerance: $\pm 10 \%$ Special Engineering Services: Available for ohmic values other than those listed, mountings, other terminal styles, all stainless frame and terminal construction.

Ordering Information

Order using the Ward Leonard part number from the table.

To see the latest in resistor technology click on the "What's New" tab at ohmite.com

Ohmite's Little Demons are small, reliable carbon composition resistors with exceptional strength. They are made tough by a molding process that combines the terminals, insulation and resistive element into an integrated unit. Along with their small size, Little Demons perform with low noise, dissipate heat rapidly and offer high temperature stability.

Color codes are readable even after prolonged use thanks to a very durable coating that resists abrasions and chipping normally associated with automatic insertion equipment.

F E A T U R E S

- Molded insulation for high dielectric strength.
- Rugged construction.
- High surge capabilities.
- Comparable to "Mil" RC07, RC20, and RC32 types.
SPECIFICATIONS

Material

Terminals: Solder-coated copper terminal.
Body: Molded Phenolic

Electrical

 Tolerance: $\pm 5 \%$ (OD/OF); $\pm 10 \%$ (OA) Derating: Linearly from $100 \% @+70^{\circ} \mathrm{C}$ to 0% @ $130^{\circ} \mathrm{C}$ Little Demon
Carbon Composition Molded

 OD/OF Series (5\% Tol.) OA Series (10\%)

		Dimensions (in. / mm) Length				Max. Dielectric Max Diam. Voltage VAC	
Series Wattage	Ohms	Tol.	Lead Dia.				

PACKAGING

For complete Little Demon tape and reel dimensions, see: http://www.ohmite.com/info/little-demon

Standard part Numbers for Little demon series

		Part No. Prefix $>$ Suffix $>$	$\begin{gathered} \text { Wattage } \\ \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \\ \hline \\ \hline} \end{gathered}$			Part No. Prefix $>$ Suffix V	$\begin{aligned} & \text { Watta! } \\ & \stackrel{\infty}{0} \text { O } \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$		ㄷ		Part No. Prefix $>$ Suffix ∇	$\begin{gathered} \text { Wa } \\ \stackrel{\infty}{\circ} \\ \vdots \end{gathered}$				Part No. Prefix $>$ Suffix V	$\begin{gathered} \text { W } \\ \text { O } \\ \text { ón } \end{gathered}$			$\begin{aligned} & \text { J. } \\ & .0 .0 \\ & \text { E } \end{aligned}$	Part No. Prefix $>$ Suffix ∇	$\begin{gathered} \text { Wa } \\ \stackrel{\infty}{\circ} \\ \hline 8 \end{gathered}$			Part No. Prefix $>$ Suffix \mathbf{V}		
	2	22GJE	$\checkmark \checkmark$	\checkmark	33	330JE	\checkmark	\checkmark	470		471JE		\checkmark		00	682JE			\checkmark	100,000	-104JE			1.5M	JE		
	2.4	24GJE	\checkmark		36	360JE					51IJE				7500	-752JE				110,000	-114JE			1.6	16	\checkmark	
	2.7	27GJE	\checkmark		39	390JE	\checkmark				561JE				8200	822JE	\checkmark	\checkmark	\checkmark	120,000	-124JE			1.8M	-185JE		
		30GJE	\checkmark		43	430JE					621JE				9100	912JE				130,000	134J			2.0	-205JE		
	3.	33GJE	\checkmark	v	47	470JE	\checkmark	\checkmark	68		681 JE		\checkmark		10,000	03J	\checkmark	\checkmark	\checkmark	150,000	-154JE			2.2M	225 J	\checkmark	
		36GJE	$\checkmark \checkmark$		51	510JE	$\checkmark \checkmark$				751JE	\checkmark			11,000	-113JE	\checkmark			160,000	-164JE			2.4M	-245JE	\checkmark	
		39GJE	\checkmark	v	56	560JE	\checkmark	\checkmark			821JE	$\checkmark \checkmark$			12,000	-123	\checkmark	\checkmark	\checkmark	180,0	184	$\checkmark \checkmark$		2.7	275JE	\checkmark	
	4	43GJE	\checkmark		62	620JE					911JE				13,000	-133JE		\checkmark		200,000	204JE			3.0	305		
	. 7	47GJE	$\checkmark \checkmark$		68	680JE	$\checkmark \checkmark$		100		-102JE	$\checkmark \checkmark$	\checkmark		15	-153JE		\checkmark	\checkmark	220,000	224JE	$\checkmark \checkmark$		3.3	JE		
	5.1	51GJE	$\checkmark \checkmark$		75	750JE	$\checkmark \checkmark$		110		112JE				16,000	163	\checkmark	\checkmark		240,000	244JE			3.6M	365JE	\checkmark	
		56GJE	$\checkmark \checkmark$	\checkmark		820JE	$\checkmark \checkmark$	\checkmark	120		22 JE	\checkmark	\checkmark		18,000	183	\checkmark	\checkmark	\checkmark	70,00	274J	\checkmark		3.9M	395	\checkmark	
		62GJE			91	910JE					132JE				20,000	203JE		\checkmark		300,000	304JE			4.3M	-435JE	\checkmark	
	6.8	68GJE	$\checkmark \checkmark$	\checkmark	100	-101JE	$\checkmark \checkmark$		150		152JE	$\checkmark \checkmark$	\checkmark		22,000	223JE		\checkmark	\checkmark	330,000	334JE			4.7M	-475JE		
	7.5	75			11	111JE			160		162JE				24,000	243				360,000	36			5.1M	515JE		
	8.2	82GJE	\checkmark	\checkmark	120	121JE	\checkmark	\checkmark	180		182JE		v		27,000	273JE	\checkmark	\checkmark	\checkmark	390,000	394JE	$\checkmark \checkmark$		5.6M	565JE		
		91GJE	$\checkmark \checkmark$			-131JE	$\checkmark \checkmark$				202JE				30,000	303JE				430,000	-434JE			6.2 M	625JE		
	10	-100.JE	\checkmark		150	-151JE	\checkmark	\checkmark			222J	$\checkmark \checkmark$	\checkmark		33,000	333JE		\checkmark	\checkmark	470,000	474JE			6.8M	-685JE		
	11	110JE	$\checkmark \checkmark$		16	-161JE			240		42				3,000	63				510,000	514JE			7.5M	755JE		
		-120JE	$\checkmark \checkmark$	\checkmark	180	18	$\checkmark \checkmark$	\checkmark	270	-	272JE		\checkmark		39,000	393	\checkmark	\checkmark	\checkmark	560,000	564			8.2 M	825JE		
	13	-130JE	\checkmark		200	201JE	\checkmark		300		22JE				43,000	433				620,000	624J			9.1 M	915JE		
		-150JE	$\checkmark \checkmark$		220	221JE		\checkmark			332		\checkmark		47,000	473JE		v	\checkmark	80,000	684JE			10M	JE		
	16	-160JE	\checkmark		24	241J					26J				51,000	513JE				750,000	754			11M	-116JE		
		- 1	\checkmark	\checkmark	270	271JE	\checkmark	\checkmark	390		392JE		\checkmark		56,000	563		\checkmark		820,000	824JE			12M	126JE		
		200JE	\checkmark		00	-301JE			430	0	432JE				62,000	623				910,000	914JE			13M	136JE		
	22	220JE	\checkmark	\checkmark	330	331JE	\checkmark	\checkmark	470		472JE	$\checkmark v$	\checkmark		68,000	683JE	\checkmark	\checkmark	\checkmark	1M	105JE			15M	156JE		
		240JE	\checkmark		360	361JE	\checkmark				512JE				75,000	753J				1.11	115JE	$\checkmark \checkmark$,	-166JE		
		270JE	\checkmark		90	391JE	\checkmark	\checkmark	560		562JE	\checkmark	\checkmark		82,000	823JE	\checkmark	\checkmark		1.2M	125JE			18M	-186JE		
		300JE	\checkmark		430	1 JE	$\checkmark \checkmark$		620		22JE	\checkmark			91,000	913JE				1.3M	135JE			20M	206		

FEATURES

- Replaces 1 and 2 watt carbon composition resistors
- Meets high energy density demands
- High peak power
- 10\% Tolerance

	Dimensions (in. / mm)							Max Working volts	Qty.
Series	Watts max.*	Resistance min. max.		$\begin{gathered} \text { Length L } \\ \pm .039(\pm 1.0) \end{gathered}$	Length C max.	$\begin{aligned} & \text { Diameter D } \\ & \pm .039(\pm 1.0) \end{aligned}$	Joules max.**		per reel
OX	1	3.3	100K	0.65 / 16.5	0.748 / 19.0	0.217 / 5.5	50	300	1000
OY	2	3.3	1M	$0.748 / 19.0$	0.886 / 22.5	0.276 / 7.0	80	400	500
* at $70^{\circ} \mathrm{C}$.	r a single	pulse.							

The OX/OY Series of fixed ceramic resistors are ideal for circuitry associated with surges, high peak power or high energy. They offer enhanced performance in high voltage power supplies, R-C snubber circuits, and inrush limiters. The OX/OY resistors can often replace carbon composition resistors which can be difficult to source.

RESISTANCE TO PULSE

PERFORMANCE CHARACTERISTICS

Test	OX	OY
Max Working Voltage	300 V	400 V
Dielectric Strength	500 V	700 V
Max Overload Voltage	600 V	800 V
Max Pulse Voltage ${ }^{1}$	14 KV	20 KV
Pulse Tolerance, 100 pulses	$1240 \mathrm{~V} @ 52 \mu \mathrm{~F}, 40 \mathrm{~J} / 35 \mathrm{sec}$.	$1640 \mathrm{~V} @ 52 \mu \mathrm{~F}, 70 \mathrm{~J} / 35 \mathrm{sec}$.

Test	Condition	Maximum $\Delta \mathbf{R}$
Life Test	MIL-STD-202, Method 108	$\pm 5 \%$
Short Time Overload	$2 \times$ rated V, 5 sec ON @ $70^{\circ} \mathrm{C}$	$\pm(2 \%+0.050 \mathrm{hm})$
Resistance to Pulse ${ }^{1} 20,000$ cycles	see circuit for test conditions	$\pm 5 \%$
Thermal Shock	MIL-STD-202, Method 107	$\pm(2 \% \pm 0.05$ ohm $)$
Moisture Resistance	1000 hrs @ $40^{\circ} \mathrm{C}, 90-95 \%$ RH	$\pm 5 \%$

${ }^{1}$ See figures, left

STANDARD PART NUMBERS FOR OX/OY SERIES																	
	Part No. Prefix $>$	Wattage - N 㐅		Part No. Prefix $>$	Wattage - N ×		Part No. Prefix $>$ Suffix $>$	Wattage - N ×		Part No. Prefix > Suffix \boldsymbol{V}	Wattage - N ×		Part No. Prefix $>$ Suffix \boldsymbol{V}	Wattage - N ×		Part No. Prefix $>$ Suffix	Wattage - N ×
3.3	33GKE	$\checkmark \checkmark$	27	270KE	$\checkmark \checkmark$	220	221KE	$\checkmark \checkmark$	1800	-182KE	$\checkmark \checkmark$	15000	153KE	$\checkmark \checkmark$	120000	124KE	\checkmark
3.9	-39GKE	$\checkmark \checkmark$	33	330KE	$\checkmark \checkmark$	270	-271KE	$\checkmark \checkmark$	2200	222KE	$\checkmark \checkmark$	18000	-183KE	$\checkmark \checkmark$	150000	154KE	\checkmark
4.7	- 47GKE	$\checkmark \checkmark$	39	390KE	$\checkmark \checkmark$	330	-331KE	$\checkmark \checkmark$	2700	272KE	$\checkmark \checkmark$	22000	223KE	$\checkmark \checkmark$	180000	184KE	\checkmark
5.6	-56GKE	$\checkmark \checkmark$	47	-470KE	$\checkmark \checkmark$	390	-391KE	$\checkmark \checkmark$	3300	332KE	$\checkmark \checkmark$	27000	273KE	$\checkmark \checkmark$	220000	224KE	\checkmark
6.8	68GKE	$\checkmark \checkmark$	56	560KE	$\checkmark \checkmark$	470	-471KE	$\checkmark \checkmark$	3900	392KE	$\checkmark \checkmark$	33000	333KE	$\checkmark \checkmark$	270000	274KE	\checkmark
8.2	82GKE	$\checkmark \checkmark$	68	680KE	$\checkmark \checkmark$	560	-561KE	$\checkmark \checkmark$	4700	472KE	$\checkmark \checkmark$	39000	393KE	$\checkmark \checkmark$	330000	334KE	\checkmark
10	-100KE	$\checkmark \checkmark$	82	820KE	$\checkmark \checkmark$	680	681KE	$\checkmark \checkmark$	5600	562KE	$\checkmark \checkmark$	47000	473KE	$\checkmark \checkmark$	390000	394KE	\checkmark
12	-120KE	$\checkmark \checkmark$	100	-101KE	$\checkmark \checkmark$	820	-821KE	$\checkmark \checkmark$	6800	682KE	$\checkmark \checkmark$	56000	563KE	$\checkmark \checkmark$	470000	474KE	\checkmark
15	-150KE	$\checkmark \checkmark$	120	-121KE	$\checkmark \checkmark$	1000	-102KE	$\checkmark \checkmark$	8200	822KE	$\checkmark \checkmark$	68000	683KE	$\checkmark \checkmark$	560000	564KE	\checkmark
18	-180KE	$\checkmark \checkmark$	150	-151KE	$\checkmark \checkmark$	1200	-122KE	$\checkmark \checkmark$	10000	-103KE	$\checkmark \checkmark$	82000	823KE	$\checkmark \checkmark$	680000	684KE	\checkmark
22	-220KE	$\checkmark \checkmark$	180	-181KE	$\checkmark \checkmark$	1500	-152KE	$\checkmark \checkmark$	12000	-123KE	$\checkmark \checkmark$	100000	-104KE	$\checkmark \checkmark$	820000	824KE	\checkmark
															1 MEG	-105KE	\checkmark

The＂A＂Series non－inductive， ceramic composite resistors are designed for a variety of applications where high energy handling capabilities are crucial．These resistors are ideal for any application which is subject to surges，high peak power，or impulse energy．

Their unique design allows uniform distribution of energy throughout their structure which results in low thermal stress．The high－temperature， solvent－resistant epoxy coating carries a UL94V0 flammabil－ ity rating which is suitable for almost any environment．

FEATURES
－High Surge Energy
－Non－Inductive
－Small Size

APPLICATIONS
－Motor Drives
－Power Supplies，UPS
－Power Conversion
－In－Rush Current Limiting

SPECIFICATIONS

Material

Resistance Element：Bulk Ceramic
Terminals：Radial； 100% Sn sol－ der coated radial（60／40 solder available upon request）
Coating：UL94V0，solvent resis－ tant epoxy

Electrical

Tolerance：$\pm 10 \%$ Standard
Operating Temp．Range：
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Derating：Derates linearly from 100%＠ $50^{\circ} \mathrm{C}$ to 0%＠ $150^{\circ} \mathrm{C}$
Temperature Rise： $100^{\circ} \mathrm{C} @$ 100% rated power， $50^{\circ} \mathrm{C}$ ambient

ORDERING INFORMATION

MOUNTING CLIP

This saddle clip conforms to the configuration of Ohmite＇s A Series resistor to provide secure mounting．Made of a durable thermoplastic polyester，the saddle clip is designed to secure the A Series in place while safely withstanding its operating temperatures．Use（2）saddle clips per resistor for extra stability．

	STANDARD SPEGIFICATIONS	
	Max．Δ R	Test Method

STANDARD VALUES FOR A SERIES														
$\begin{aligned} & \text { OU } \\ & \text { N } \\ & \text { IO } \\ & \text { E } \end{aligned}$	Part No． Prefix＞ Suffix \mathbf{V}	Series ふ㐅⿸⿻一丿又⿰亻⿱丶⿻工二又	$\begin{aligned} & \text { OU } \\ & \text { N } \\ & \text { IO } \\ & \text { E } \end{aligned}$	Part No． Prefix $>$ Suffix	Seri 3	es 民		Part No． Prefix＞ Suffix ∇	Seri 3	es そ		Part No． Prefix $>$ Suffix \mathbf{V}		
1.0	10GK	\checkmark	5.	－56GK	\checkmark	\checkmark	33	330K	$\checkmark \checkmark$	$\checkmark \checkmark$	220	221K	$\checkmark \checkmark$	\checkmark
	12GK			68GK	\checkmark	\checkmark	39	－390K	$\checkmark \checkmark$	$\checkmark \checkmark$	270	271K	\checkmark	
	15GK	\checkmark		－82GK	\checkmark	\checkmark	47	470K	\checkmark	\checkmark	330	331K	$\checkmark \checkmark$	\checkmark
	18GK		10	－100K	$\checkmark \checkmark$	$\checkmark \checkmark$	56	560K	\checkmark	\checkmark	470	471K	\checkmark	
2.2	22GK	$\checkmark \vee \checkmark$	12	－120K			68	680 K	\checkmark	$\checkmark \checkmark$	560	561K	\checkmark	
2.7	27GK	\checkmark	15	－150K	\checkmark	\checkmark	82	820K	\checkmark	\checkmark	680	681 K	\checkmark	
	33GK	$\checkmark \checkmark \checkmark$	18	－180K			100	－101K	$\checkmark \checkmark$	$\checkmark \checkmark$	820	821K	\checkmark	
	39GK	$\checkmark \checkmark \checkmark$	22	220K	$\checkmark \checkmark$	$\checkmark \checkmark$	120	－121K			1000	－102K	$\checkmark \checkmark$	\checkmark
	47GK	$\checkmark \quad \checkmark$	27	－270K	\checkmark	\checkmark	$\begin{aligned} & 150 \\ & 180 \end{aligned}$	$\begin{array}{r} 151 \mathrm{~K} \\ -181 \mathrm{~K} \end{array}$	\checkmark	ν				
Check product availability at WWW．ohmite．com $\boldsymbol{\downarrow}$							$\boldsymbol{\checkmark}=$ Standard values	Non－standard values subject to a minimum handling charge per item．						

Power Chip ${ }^{\circledR}$
Thick Film on Alumina Substrate

		Dimensions $(\pm .020 \mathrm{in} /. \pm .508 \mathrm{~mm})$ Length L		
Series	Wattage	\mathbf{P}	$0.200 / 5.08$	$0.50 / 12.70$
TA203	3.0	$0.60 / 15.24$		
TA303	3.0	$0.300 / 7.62$	$0.50 / 12.70$	$0.60 / 15.24$
TA205	5.0	$0.200 / 5.08$	$0.50 / 12.70$	$1.00 / 25.40$
TA305	5.0	$0.300 / 7.62$	$0.50 / 12.70$	$1.00 / 25.40$
TA605	5.0	$0.600 / 15.24$	$1.00 / 25.40$	$0.50 / 12.70$
TA805	5.0	$0.800 / 20.32$	$1.00 / 25.40$	$0.50 / 12.70$
TA207	7.5	$0.200 / 5.08$	$0.75 / 19.05$	$1.00 / 25.40$
TA307	7.5	$0.300 / 7.62$	$0.75 / 19.05$	$1.00 / 25.40$
TA310	10.0	$0.300 / 7.62$	$1.00 / 25.40$	$1.00 / 25.40$
TA810	10.0	$0.800 / 20.32$	$1.00 / 25.40$	$1.00 / 25.40$
TA025	25.0	$1.90 / 48.3$	$2.220 / 56.39$	$1.170 / 29.70$
TA050	50.0	$1.90 / 48.3$	$2.220 / 56.39$	$2.270 / 57.60$
TA100	100.0	$4.10 / 104.1$	$4.420 / 112.27$	$2.270 / 57.60$

Ohmite's original Power Chip resistors feature our thick film on alumina substrate technology. These planar packages yield space saving, $10 \mathrm{~W} / \mathrm{in}^{2}$ power densities that require over 50% less board space than other radial packages. Convection cooling is maximized by the planar package configuration which dissipates heat well above board level.

Ohmite's power chip resistors have a 125% higher operating temperature range than competitive product of similar design. High temperature solder and in-process plating keep terminations secure under self-heating effects by preventing re-flow from full power operation.

Flexible packaging schemes make these resistors ideal for power supplies, audio amplifiers, video fly-back, and other power control applications.

F E A T URES

- High-Temp Terminal Construction
- Wide Resistance Range
- Low Inductance (50nH-100nH)
- High Power Density
- Easy to install. PC-mountable

ORDERING INFORMATIOI				
 TA 305 PA4K50J E				
$\text { TA } 305 \text { PA4K50J }$				

The TAH20 is a completely encapsulated thick film resistor in the TO220 package outline. Rated for 20 watts @ $25^{\circ} \mathrm{C}$ case temperature, these resistors are electrically isolated, and molded in a high temperature case.

Designed for heat sink mounting, the symmetrical package is ready for use with snap-on style heat sinks (we recommend use of thermal grease). The TAH20 Series is very low induction, and available in a wide range of resistance values in standard 5\% tolerance. 1% tolerance available by special order.
FEATURES

- 20 Watt Power Rating at $25^{\circ} \mathrm{C}$ Case Temperature
- High Pulse Tolerant Design
- Quick-snap Molded Package
- Very Low Inductance Design
- Resistor Package Electrically Isolated from Heat Sink
- Low Thermal Resistance to Heat Sink @ Rtн<6. $25^{\circ} \mathrm{C} / \mathrm{W}$
- Tube Packaging Available

APPLICATIONS

- Frequency Conversion
- High Frequency Balancing
- Snubbers

SPECIFICATIONS
Electrical
Resistance Range: 0.05Ω to
$10 \mathrm{~K} \Omega$, other values available upon request
Tolerance: $\pm 5 \%$ std.
1\% Available on request

Temperature Coefficient:

Referenced to $25^{\circ} \mathrm{C}$,
ΔR taken at $+105^{\circ} \mathrm{C}$;
1 to $10 \Omega: \pm(100 \mathrm{ppm}+0.002 \Omega) /{ }^{\circ} \mathrm{C}$
10Ω \& up: $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Max Operating Voltage: 350 V
Dielectric Strength: 1,800 VAC
Power Rating: 20 W @ $25^{\circ} \mathrm{C}$ case temperature; see derating curve, below
Insulation Resistance: $10 \mathrm{G} \Omega \mathrm{min}$.
Momentary Overload: 2 x rated power for 5 seconds where applied voltage ≤ 1.5 times max. operating voltage. $\Delta R \pm$ $(0.3 \%+0.001 \Omega)$ max.
Terminal Material: Copper
Terminal Plating: Lead Free Solder (97% Tin, 3% Silver)
Mounting: Requires the use of a snap-on style heat sink. A thermal compound should be properly applied.
Solder Process: The TAH2O cannot exceed $260^{\circ} \mathrm{C}$ for more than 10 seconds during soldering process.

DERATING GURVE

Check product availability at www.ohmite.com

ORDERING INFORMATION

TAH/TCH

TAH Series

20 Watt T0220 Package
 Thick Film Power

TES T D A TA		
Load Life	MIL-R-39009, 2000 Hours @ Rated Pwr $\Delta \mathrm{R}= \pm(1.0 \%+0.001) \Omega$	
Thermal Shock	MIL-R-STD-202, Method 107, Cond. F	$\Delta \mathrm{R}= \pm(0.3 \%+0.001) \Omega \max$
High Freq Vibration	MIL-R-STD-202, Method 204, Cond. D	$\Delta \mathrm{R}= \pm(0.2 \%+0.001) \Omega \max$
Terminal Strength	MIL-R-STD-202, Method 211, Cond. A (Pull Test) 2.4N	$\Delta \mathrm{R}= \pm(0.2 \%+0.001) \Omega \max$
Moisture Resistance MIL-R-STD-202, Method 106	$\Delta \mathrm{R}= \pm(0.5 \%+0.01) \Omega \max$	

PULSE-FORM
E-function, time between two pulses: 1 sec .

Standard Part Numbers

TAH20P100RJE TAH20P220RJE TAH20P33ROJE TAH20P4R70JE TAH20PR100JE TAH20P10KOJE TAH20P22R0JE TAH2OP390RJE TAH20P510RJE TAH20PR150JE TAH20P10ROJE TAH20P240RJE TAH20P39ROJE TAH20P51ROJE TAH2OPR200JE TAH20P150RJE TAH20P24R0JE TAH2OP3K30JE TAH20P5K10JE TAH20PR220JE TAH20P15ROJE TAH20P2K00JE TAH20P3K90JE TAH20P5R10JE TAH20PR240JE TAH20P1K00JE TAH20P2K20JE TAH20P3R30JE TAH20P750RJE TAH20PR330JE TAH20P1K50JE TAH20P2K40JE TAH20P3R90JE TAH20P75ROJE TAH20PR390JE TAH20P1R00JE TAH20P2R00JE TAH20P470RJE TAH20P7K50JE TAH20PR470JE TAH20P1R50JE TAH20P2R20JE TAH20P47ROJE TAH20P7R50JE TAH20PR510JE TAH20P200RJE TAH20P2R40JE TAH20P4K70JE TAH20PR050JE TAH20PR750JE TAH20P20ROJE TAH2OP330RJE

> Our friendly Customer
> Service team can be reached at $866-9-0 H M I T E$

TBH Series

25 Watt T0220 Package Thick Film Power

Note: These dimensions apply to TBH products manufactured after March 2007

STANDARD PART NUMBERS FOR TBH SERIES			
Ohms	Part Number 5\% Tolerance	Ohms	Part Number 5\% Tolerance
2	TBH25P2R00JE	100	TBH25P100RJE
7.5	TBH25P7R50JE	150	TBH25P150RJE
10	TBH25P10R0JE	220	TBH25P220RJE
15	TBH25P15R0JE	240	TBH25P240RJE
22	TBH25P22R0JE	330	TBH25P330RJE
30	TBH25P30R0JE	470	TBH25P470RJE
33	TBH25P33R0JE	510	TBH25P510RJE
47	TBH25P47R0JE	1000	TBH25P1K00JE
51	TBH25P51R0JE	1500	TBH25P1K50JE
75 TBH25P75R0JE		2000	TBH25P2K00JE
		2700	TBH25P2K70JE
		10,000	TBH25P10K0JE

[^1]Ohmite's TBH25 TO220 style resistors are designed for a variety of uses that require intermediate heatsinkable power at an economical price. Engineered for industrial applications, these resistors deliver reliable performance to traditional high-quality Ohmite standards.

FEATURES

- 25 Watts, @ $25^{\circ} \mathrm{C}$ case temperature
- Non-Inductive Performance
- Low Thermal Resistance
- Anti-static tube packaging available
- Economically priced
- Resistance element is electrically insulated from metal heat sink mounting tab

A P P L I C A T I O N S

- Power Supplies
- Industrial Controls
- Automotive Steering
- Pre-load/Damping
- Snubber/Bleeder

SPECIFICATIONS
Material
Resistor: Thick film element
Case: High Temperature Plastic
Terminals: Solder coated phospher bronze

Electrical:

Derating: 100\% @ $25^{\circ} \mathrm{C}$ to 0\% @ $150^{\circ} \mathrm{C}$ curve referenced to case temperature
Dielectric Strength: 1000 VDC
Max. Mounting Torque: 0.9 Nm Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature Coefficient:
2-10 ohm @ $\pm 100 \mathrm{ppm}$ $11-10 \mathrm{k}$ ohm @ $\pm 50 \mathrm{ppm}$
Thermal Resistance: $5^{\circ} \mathrm{C} / \mathrm{W}$ Tolerance: 5\%
Power: 25 Watts. Rating based on $25^{\circ} \mathrm{C}$ case temperature. The case temperature is to be used for the purposes of establishing the applied power limit. The case temperature must be made with thermocouple contacting the center of the component's mounting tab mounted on designated heat sink.
Resistance Range: 2.0 2 -10K
Max. Operating Voltage: 350V

	TEST DATA	
Load Life	(1000hrs @ rated power)	$\max . \Delta \mathrm{R} \pm 1 \%$
Moisture Resistance	(MIL-STD-202, method 106)	$\max . \Delta \mathrm{R} \pm 0.5 \%$
Short Time Overload	(2x rated power, not to exceed $1.5 x$ max. operating voltage)	$\max . \Delta \mathrm{R} \pm 0.3 \%$
Solderability	(MIL-STD-202, method 208)	
Thermal Shock	(MIL-STD-202, method 107, cond. F)	$\max . \Delta \mathrm{R} \pm 0.3 \%$
Terminal Strength	(MIL-STD-202, method 211, cond. A (pull test) 2.4N)	$\max . \Delta \mathrm{R} \pm 0.2 \%$
Vibration	(MIL-STD-202, method 204, cond. D)	$\max . \Delta \mathrm{R} \pm 0.2 \%$

Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

Ohmite's TCH35 TO220 package resistor provides 35W of steady state power when properly used in today's well defined heat sink applications.

These very low induction resistors are built under proprietary processes that deliver more power handling capability than other TO220 package resistors of similar size.

Standard terminal forms are provided for manual or automatic insertion.

A single screw mounting tab connects to the heat sink and should be accompanied by the use of a thermal compound. The TCH35 Series offers a low thermal resistance to the heat sink of $<4.28^{\circ} \mathrm{C} / \mathrm{W}$.
FEATURES

- 35W Power Rating @ $25^{\circ} \mathrm{C}$
- Very Low Inductance Design
- Single Screw Mounting
- Low Thermal Resistance to Heat Sink @ Rth<4.28 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
- Resistance Element is Electrically Insulated from Metal Heat Sink Mounting Tab

APPLICATIONS

- Switching Power Supplies
- Snubbers
- High Frequency
- Voltage Regulation
- Low Energy Pulse Loading

SPECIFICATIONS

Electrical

Resistance Range: 0.1Ω to $10 \mathrm{~K} \Omega$ (higher values on request subject to derating)
Resistance Tolerance:
$\pm 5 \%$ standard
$\pm 1 \%$ available on request

Temperature Coefficient:

Referenced to $25^{\circ} \mathrm{C}$,
ΔR taken at $+105^{\circ} \mathrm{C}$
10Ω and above: $\pm 50 \mathrm{ppm}^{\circ} \mathrm{C}$
1Ω to10 Ω :
$\pm(100 \mathrm{ppm}+0.002 \Omega) /{ }^{\circ} \mathrm{C}$
Max. Operating Voltage: 350V
Dielectric Strength: 1800 VAC Insulation Resistance: 10G Ω min.
Momentary Overload: 2x rated power for 5 seconds as long as the applied voltage ≤ 1.5 times the continuous operating voltage, where $\Delta \mathrm{R} \pm(0.3 \%+0.01 \Omega)$ max
Terminal Material: Copper
Terminal Plating: Lead Free Solder (97\% Tin, 3\% Silver)
Maximum Torque: 0.9 Nm
Power Rating: 35 Watts @ $25^{\circ} \mathrm{C}$ case temperature; see derating curve, below
Working Temperature Range: $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Solder Process: The TCH35 cannot exceed $260^{\circ} \mathrm{C}$ for more than 10 seconds during soldering process.

TCH Series

35 Watt T0220 Package Thick Film Power

TES T D A TA			
Load Life	MIL-R-39009, 2000 Hours @ Rated Pwr $\Delta R= \pm(1.0 \%+0.01) \Omega$		
Thermal Shock	MIL-R-STD-202, Method 107, Cond. F	$\Delta R= \pm(0.3 \%+0.01) \Omega \max$	
High Freq Vibration	MIL-R-STD-202, Method 204, Cond. D	$\Delta R= \pm(0.2 \%+0.01) \Omega \max$	
Terminal Strength	MIL-R-STD-202, Method 211, Cond. A (Pull Test) $2.4 N$	$\Delta R= \pm(0.2 \%+0.01) \Omega \max$	
Moisture Resistance MIL-R-STD-202, Method 106	$\Delta R= \pm(0.5 \%+0.01) \Omega \max$		

DERATING GURVE
TAH/TCH

PULSE-FORM
E-function, time between two pulses: 1 sec .

STANDARD PART NUMBERS

TCH35P100RJE TCH35P220RJE TCH35P33R0JE TCH35P510RJE TCH35PR200JE TCH35P10K0JE TCH35P22ROJE TCH35P390RJE TCH35P51ROJE TCH35PR220JE TCH35P10ROJE TCH35P240RJE TCH35P39R0JE TCH35P5K10JE TCH35PR240JE TCH35P150RJE TCH35P24R0JE TCH35P3K30JE TCH35P5R10JE TCH35PR330JE TCH35P15R0JE TCH35P2K00JE TCH35P3K90JE TCH35P5R60JE TCH35PR390JE TCH35P1K00JE TCH35P2K20JE TCH35P3R30JE TCH35P750RJE TCH35PR470JE TCH35P1K50JE TCH35P2K40JE TCH35P3R90JE TCH35P75R0JE TCH35PR510JE TCH35P1R00JE TCH35P2R00JE TCH35P470RJE TCH35P7K50JE TCH35PR560JE TCH35P1R50JE TCH35P2R20JE TCH35P47R0JE TCH35P7R50JE TCH35PR750JE TCH35P200RJE TCH35P2R40JE TCH35P4K70JE TCH35PR100JE TCH35PR050JE TCH35P20R0JE TCH35P330RJE TCH35P4R70JE TCH35PR150JE

TDH Series

35 Watt DPAK Package
 Thick Film Power Surface Mount

DPAK style power package for surface Soldering note: During surface mount soldering the mounting applications; 35 W power soldering temperature profile must not cause the rating at $25^{\circ} \mathrm{C}$ case temperature. metal tab of this device to exceed $220^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{C}\right.$ for the TDH 35 H)!

TEST DATA		
Load Life	(MIL-R-39009, 2,000 hours	$\Delta \mathrm{R} \pm(1.0 \%+0.01 \Omega)$
Moisture Resistance	(MIL-Std-202, Method 106)	$\begin{aligned} \Delta \mathrm{R}= & (0.5 \% \\ & \max . \end{aligned}$
Short Time Overload	(2 times rated power with applied voltage not to exceed 1.5 times maximum continuous operating voltage for 5 seconds)	$\begin{aligned} & \Delta \mathrm{R} \pm(0.3 \%+0.01 \Omega) \\ & \quad \text { max. } \end{aligned}$
Thermal Shock	(MIL-Std-202, Method 107, Cond. F)	$\begin{aligned} \Delta \mathrm{R}= & (0.3 \%+0.01 \Omega) \\ & \max . \end{aligned}$
Terminal Strength	(MIL-Std-202, Method 211, Cond. A (Pull Test) 2.4N)	$\begin{aligned} \Delta \mathrm{R}= & (0.2 \%+0.01 \Omega) \\ & \max . \end{aligned}$
Vibration, High Frequency	(MIL-STD-202, method 211, cond. A (pull test) 2.4 N)	$\begin{aligned} \Delta \mathrm{R}= & (0.2 \%+0.01 \Omega) \\ & \max . \end{aligned}$

PULSE-FORM
E-function, time between two pulses: 1 sec .

Ohms	Part Number 5\% Tolerance	Ohms	Part Number 5\% Tolerance
$\begin{aligned} & 0.10 \\ & 0.15 \\ & 0.20 \\ & 0.25 \\ & 0.30 \\ & \hline \end{aligned}$	TDH35RR100JETDH5PR150JETDH3PR200JETDH5PR250JETDH35PR300JE	25	TDH35P25ROJE
		33 39	TDH35P33ROJE
		39	TDH35P39ROJE
		47	TDH35P47ROJE
$\begin{aligned} & 0.36 \\ & 0.47 \\ & 0.50 \\ & 0.75 \\ & 1.0 \\ & \hline \end{aligned}$	TDH35PR360JE TDH35PR470JE TDH35PR500JE TDH35PR750JE TDH35P1R00JE	75	TDH35P75ROJE
		100	TDH35P100RJE
		150	TDH35P150RJE
		200	TDH35P200RJE
$\begin{aligned} & 2.0 \\ & 3.0 \\ & 5.0 \\ & 7.5 \end{aligned}$		250	TDH35P250RJE
	TDH35P2R00JE TDH35P3R00JE TDH35P5R00JE TDH35P7R50JE TDH35P10R0JE	300	TDH35P300RJE
		500	TDH35P500RJE
		750	TDH35P750RJE
			TDH35P1K00.JE
		1500	TDH35P1K50JE
$\begin{aligned} & 15 \\ & 20 \end{aligned}$	TDH35P15ROJE	2500	TDH35P2K50JE
		3000	TDH35P3K00JE
		5000	TDH35P5K00JE

Ohmite's TDH resistor is an economical solution to intermediate power application design requirements. TDH's reliable thick film on alumina substrate construction can be easily heat sinked for higher power performance. TDH resistors are ideal for pulseloading, pre-charge, bleeder, and snubber applications.

FEATURES

- 35 Watt power rating at $25^{\circ} \mathrm{C}$
- SMD - DPAK package configuration
- Heat resistance to cooling plate: $\mathrm{R}_{\text {th }}<4.28^{\circ} \mathrm{C} / \mathrm{W}$
- A molded case for environmental protection.
- Resistor element is electrically insulated from the metal sink tab.

SPECIFICATIONS

Material

Terminal: Copper
Terminal Plating: Lead Free Solder (97\% Tin, 3\% Silver)

Electrical

Resistance Range: 0.1Ω to $10 \mathrm{~K} \Omega$ other values on request
Tolerance: $\pm 1 \%$ to $\pm 10 \%$ (0.5\% on request)

Max. Operating Voltage: 350 V
Insulation Resistance: 10G Ω min.
Power Rating: Depends upon case temperature. See derating curve.
Working Temperature Range: $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Solder Process: The TDH35P cannot exceed $220^{\circ} \mathrm{C}\left(260^{\circ} \mathrm{C}\right.$ for the TDH35H) for more than 10 seconds during soldering process.
Derating: 100% @ $25^{\circ} \mathrm{C}$ to 0% @ $150^{\circ} \mathrm{C}$ curve referenced to case temperature
Dielectric Strength: 1,800VAC
Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature Coefficient: 10Ω and above, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, referenced to $25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $+105^{\circ} \mathrm{C}$. Between 1Ω and 10Ω, $\pm(100 \mathrm{ppm}+0.002 \Omega) /{ }^{\circ} \mathrm{C}$, referenced to $25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $+105^{\circ} \mathrm{C}$.
Inductance: less than 20 nanohenries
Flatness: less than 0.1 mm tolerance

DERATING

Derating (thermal resistance): $0.23 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ $\left(4.28^{\circ} \mathrm{C} / \mathrm{W}\right)$. The case 3 temperature is to be used for purposes of establishing the applied power limit. The case temperature measurement must be made with a thermocouple contacting the center of the component mounted on the designed heat sink. Thermal grease should be applied propperly.
TAPE DIMENSIONS
750 pc./reel

F E A T URES

- 70 Watt power rating at $25^{\circ} \mathrm{C}$ case temperature
- Non-inductive performance
- Low thermal resistance
- RoHS compliant design
- Two or three terminal versions available
- Heat sink can be grounded through middle terminal (P style)

SPECIFICATIONS

Material

Resistor: thick film on alumina
Lead: solder coated phosphor bronze
Solder: 100% Sn

Case: high temperature plastic P Package: middle terminal is electrically connected to header and insulated from left and right terminals
M Package: no middle terminal

Electrical

Derating: linear, 100% at $25^{\circ} \mathrm{C}$ to 0% at $150^{\circ} \mathrm{C}$
Resistance range: $2 \Omega-10 \mathrm{~K} \Omega$
Max. working voltage: 500 V or Ohm's Law limited
Thermal Resistance: $1.79^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Coefficient:
2ת-10 : $\pm 100 \mathrm{ppm}$ $10 \Omega-10 \mathrm{~K} \Omega: \pm 50 \mathrm{ppm}$
Insulation Resistance: $400 \mathrm{M} \Omega$ Short time overload: 2x rated power for 5 sec., not to exceed 1.5x max. working voltage

Dielectric Strength: 2000 VDC

TEST DATA

Test	Conditions Of Test	Performance
Load life	1000 hrs @ rated power	$\pm 1 \% \Delta R$
Moisture resistance	MIL -STD-202, method 106	$\pm 0.5 \% \Delta R$
Short time overload	2x rated power for 5 sec., not to exceed $1.5 x$ max. working voltage	$\pm 0.3 \% \Delta R$
Solderability	MIL-STD-202, method 208	
Thermal shock	MIL-STD-202, method 170, cond. F	$\pm 0.2 \% \Delta R$

STANDARD PART NUMBERS FOR TEH SERIES		
Ohms	P-type 3-terminal	M-type 2-terminal
2	TEH70P2R00JE	TEH70M2R00JE
3	TEH70P3R00JE	TEH70M3R00JE
4	TEH70P4R00JE	
5	TEH70P5R00JE	TEH70M5R00JE
7.5	TEH70P7R50JE	TEH70M7R50JE
10	TEH70P10R0JE	TEH70M10R0JE
15	TEH70P15R0JE	TEH70M15R0JE
20	TEH70P20R0JE	
24	TEH70P24R0JE	TEH70M24R0JE
33		TEH70M33R0JE
39		TEH70M39R0JE
47	TEH70P47R0JE	TEH70M47R0JE
68	TEH70P68R0JE	TEH70M68R0JE
75		TEH70M75R0JE
100	TEH70P100RJE	TEH70M100RJE
150	TEH70P150RJE	TEH70M150RJE
270	TEH70P270RJE	TEH70M270RJE
470	TEH70P470RJE	TEH70M470RJE
680		TEH70M680RJE
750	TEH70P750RJE	TEH70M750RJE
1000	TEH70P1K00JE	TEH70M1K00JE
1500	TEH70P1K50JE	TEH70M1K50JE
2000	TEH70P2K00JE	TEH70M2K00JE
3000		TEH70M3K00JE
5000	TEH70P5K00JE	TEH70M5K00JE
$\begin{array}{r} 7500 \\ 10000 \end{array}$	TEH70P7K50JE	
10000		TEH70M10K0JE

TEH Series

70 Watt T0247 Package Thick Film Power

DERATING

ORDERING INFORMATION

Check product availability at www.ohmite.com

Check product availability using the Worldwide Inventory Search at ohmite.com

Thick Film Power

F E A T URES

- 85 Watt power rating at $25^{\circ} \mathrm{C}$ case temperature
- Non-inductive performance
- Low thermal resistance
- RoHS compliant design
- Two or three terminals versions available
- Heat sink can be grounded through middle terminal (P style)

SPECIFICATIONS
Material
Resistor: thick film on alumina
Lead: solder coated phosphor bronze
Solder: 100\% Sn
Case: high temperature plastic
\mathbf{P} Package: middle terminal is electrically connected to header and insulated from left and right terminals
M Package: no middle terminal

Electrical

Resistance range: $2 \Omega-10 \mathrm{~K} \Omega$
Max. working voltage: 500 V or Ohm's law limited
Thermal Resistance: $1.47^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Coefficient: 2 2 -10 Ω : ± 100 ppm 10 $\Omega-10 \mathrm{~K} \Omega: \pm 50 \mathrm{ppm}$
Insulation Resistance: $400 \mathrm{M} \Omega$
Short time overload: 2x rated
power (not to exceed 1500V)
Derating: linear, 100% at $25^{\circ} \mathrm{C}$ to 0% at $150^{\circ} \mathrm{C}$

DERATING

ORDERING INFORMATION

STANDARD PART NUMBERS FOR TFH SERIES

Ohms	P-type 3-terminal	$\begin{gathered} \text { M-type } \\ \text { 2-terminal } \end{gathered}$
2	TFH85P2R00JE	
3		TFH85M3R00JE
5.1 6.8	TFH85P5R10JE	TFH85M6R80JE
7.5	TFH85P7R50JE	
10	TFH85P10R0JE	TFH85M10R0JE
15	TFH85P15R0JE	
24		TFH85M24R0JE
33		TFH85M33R0JE
39	TFH85P39R0JE	
51	TFH85P51R0JE	TFH85M51R0JE
68	TFH85P68R0JE	
75	TFH85P75R0JE	
100	TFH85P100RJE	TFH85M100RJE
150		TFH85M150RJE
220	TFH85P220RJE	
330	TFH85P330RJE	
470		TFH85M470RJE
750	TFH85P750RJE	
1000	TFH85P1K00JE	TFH85M1K00JE
1500	TFH85P1K50JE	
2700		TFH85M2K70JE
3300	TFH85P3K30JE	
4700		TFH85M4K70JE
6800	TFH85P6K80JE	
7500	TFH85P7K50JE	
10000	TFH85P10K0JE	TFH85M10K0JE

Check product availability at www. ohmite.com

	PERFORMANCE DATA	
Load life	1000 hrs @ rated power	$\max . \Delta R \pm 1 \%$
Moisture resistance	MIL -STD-202, method 106	$\max . \Delta \mathrm{R} \pm 0.5 \%$
Short time overload	2x rated power for 5 sec., not to exceed 1500 V	$\max . \Delta \mathrm{R} \pm 0.3 \%$
Solderability	MIL-STD-202, method 208	
Thermal shock	MIL-STD-202, method 170, cond. F	$\max . \Delta \mathrm{R} \pm 0.2 \%$

> To see the latest in resistor technology click on the "What's New" tab at ohmite.com

Due to a non inductive design these resistors are ideally suited for high frequency and pulse load applications. By direct mounting on a heatsink significant cost advantages can be realized. The TGH can be supplied in a 2 -terminal or 4-terminal version. Triple resistors are available. Popular applications are: Variable speed Drives, Power Supplies, Control Devices, Telecom, Robotics, Motor Controls and other switching designs. Specials and custom designed components on request.

SPECIFICATIONS

Material

Heat Sink: Nickel-plated copper
Contacts: Nickel-plated copper
Substrate: Al203 (96\%)
Molding Compound: High-performance epoxy, compliant to UL94-V0
Fixture Nuts: American standard 303

Electrical

Resistance Range: 0.1Ω to $1 \mathrm{M} \Omega$
Tolerance: $\pm 5 \%$

Temperature coefficient:

 $\pm 250 \mathrm{ppm}$ (at $+105^{\circ} \mathrm{C}$ ref. to $+25^{\circ} \mathrm{C}$)Max. Work.Voltage: 500V (up to $1,000 \mathrm{~V}$ on special request)
Power Rating at $85^{\circ} \mathrm{C}$: 120 W (see derating)
Partial Discharge: up to $2,000 \mathrm{Vrms} / 80 \mathrm{pC}$
Voltage Proof: Dielectric Strength up to $4,000 \mathrm{~V}$ DC against ground

TGH Series
120 and 200 Watt SOT227Package Thick Film Power

Heat Resistance to Cooling
Plate: $\mathrm{R}_{\text {th }}<0.35 \mathrm{~K} / \mathrm{W}$
Capacitance/Mass: 45 pF
Working Temp. Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
Max. Torque for Base Plate (static): 1.5 Nm
Max. Torque for Contacts (static): 1.3 Nm. M4 screws (not included)
Derating (thermal resistance): $2.86 \mathrm{~W} /{ }^{\circ} \mathrm{K}\left(0.35^{\circ} \mathrm{K} / \mathrm{W}\right)$

DERATING

Best results can be reached by using a thermal transfer compound with a heat conductivity of better than $1 \mathrm{~W} / \mathrm{mK}$

Standard Part numbers

Ohms	120 Watt TGHH	200 Watt TGHL
0.1	TGHHVR100JE	TGHLVR100JE
0.5		TGHLVR500JE
1	TGHHV1R00JE	TGHLV1R100JE
5 10	TGHHV5R00JE	TGHLV10ROJE
33	TGHHV33R0JE	TGHLV33R0JE
50	TGHHV50R0JE	
100	TGHHV100RJE	TGHLV100RJE
150	TGHHV150RJE	TGHLV150RJE
500	TGHHV500RJE	TGHLV500RJE
680	TGHHV680RJE	TGHLV680RJE
1K	TGHHV1K00JE	TGHLV1K00JE
5 K	TGHHV5K00JE	TGHLV5K00JE
10K	TGHHV10K0JE	TGHLV10K0JE

CONFIGURATIONS (per package)

> Subscribe to our
> New Product Bulletin at ohmite.com

The TGHG Series uses state of the art technology to provide highly reliable, non inductive performance. This resistor is ideal for many current monitoring and controls applications.

FEATURES

- Resistance values beginning at $0.5 \mathrm{~m} \Omega$
- Non Inductive
- Four terminal Kelvin connection
- SOT 227 Package
- Four terminals to isolate measurement path from current flow path
- Accuracy in a high power package

SPECIFICATIONS

Material

Standard Resistance Values: $0.5 \mathrm{~m} \Omega-1 \Omega$, others on request
Resistance Tolerances: 1\%
Pulse current: up to $500 \mathrm{~A} / 0.5 \mathrm{sec}$, depending on ohmic value
Temperature Coefficient: referenced to $25^{\circ} \mathrm{C}, \Delta \mathrm{R}$ taken at $-15^{\circ} \mathrm{C}$ and $+105^{\circ} \mathrm{C},<60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$; $<500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for resistance range $27 \mathrm{~m} \Omega-49 \mathrm{~m} \Omega$)
Power Rating: 100 W at $70^{\circ} \mathrm{C}$ case temperature; 50Amp permanent (higher on request)
Dielectric strength: 1000VDC, higher value on request
Heat Resistance: Rth <0.56K/W
Protection class: acc. to IEC 950/CSA22.2 950/M -89 and EN 60950.88:2

Working Temp. Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
Max. Torque for Contacts: 1.3 Nm 8 (static)

Max Torque for Base Plate:1.5 Nm (static)

STD. PART NUMBERS	
Ohms	$\mathbf{1 0 0}$ Watt TGHG
0.00050	TGHGCR0005FE
0.00100	TGHGCR0010FE
0.00200	TGHGCR0020FE
0.00500	TGHGCR0050FE
0.01000	TGHGCR0100FE
0.01500	TGHGCR0150FE
0.02000	TGHGCR020FFE
0.02500	TGHGCR0250FE
0.05000	TGHGCR0500FE
0.0750	TGHGCR0750FE
0.1000	TGHGCR1000FE

TGHG Series

ORDERING INFORMATION

Configuration
$\mathrm{C}=$ current sense $\quad \mathrm{E}=\mathrm{RoHS}$ compliant

Check product availability at WWW.ohmite.com

Best results can be reached by using a thermal transfer compound with a heat conductivity of better than $1 \mathrm{~W} / \mathrm{mK}$

TK/TN Series

20 and 15 Watt T0-220 Package Thick and Thin Film

Ohmite is proud to introduce the newest addition to our family of Heat Sinkable Power Resistors. The TK/TN Series offers 3 major advances over existing TO-220 products:

- Low Resistance Values down to 0.03 ohms for current sense applications
- Low Cost
- Thin Film Construction is the first Thin Film power resistor in heatsinkable packaging on the market.

WHY THIN FILM?
Thin film technology offers the following performance advantages:

- Extremely stable (low TCR)
- Low Noise (parasitic capacitance and resistance)
- Excellent High Frequency Performance
- High Accuracy (tight tolerances)

TK/TN mounted vertically

Material

Resistive element: Thick or thin film chip resistor
Leads: Tin plated copper (100Sn)
Case: Ryton
Heatsink plate: Black anodized aluminum

The TL Series add heat sinkable options to the thick film resistor family. The resistor element is packaged with plastic insulators, and quick-connect terminals in a symmetrical aluminum profile for easy heat sink mounting. Special tapped configurations are offered to reduce on board component count.

Efficient thermal packaging provides improved heat conduction to the heat sink. Self-insulating package design increases voltage withstanding characteristics when compared to traditional aluminum housings. The in line mounting profile makes the TL Series easily adaptable to most heat sink systems. Thermal compound is always recommended when heat sinking.
FEATURES

- Very low inductance
- Low profile design
- In-Line Mounting Profile
- $1 / 4$ " Quick connect terminals
- Consult factory for common, isolated, or special multiple tap options.

APPLICATIONS

- Semiconductor Balancing
- Frequency Converters
- Snubber
- In-Rush Current Limiter
- Bleeder Resistor
- Power Switching
- Voltage Dividers

SPECIFICATIONS

Material

Resistive Element: Thick Film on Alumina
Housing: Aluminum
Insulators: Glass reinforced high
temperature Valox ${ }^{\text {® }}$
Terminals: Tinned brass

Electrical

Power Range: 27-275 watts
Resistance Range:
0.3 ohm - 4 megohm

Tolerance:

Ultra Power (U Style): $\pm 10 \%$ std;
Standard Power: $\pm 10 \%$ std;
5% and 1% available
Temperature Coefficient: ± 250 PPM
Test Voltage for 1 Minute: 6000 VDC/2500 VAC
Working Voltage: 1200 VAC
External Creeping Distance: 12 mm
Temperature Limits: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Insulation: $>100^{2}$ Mohm/500V
Air Distance, Terminal to
Ground: 7 mm
Inductance: $50-100 \mathrm{nH}$

elegtrigal/mechanigal spegs

Type Values for Standard Resistors		TL54	TL71	TL88	TL104	TL122
Max. Rated Wattage	W	35	96	155	215	275
Nominal Power	W	18	48	78	108	137
Surge Load in 10 sec	W	72	192	312	432	548
Max Voltage Between Terminal	V	1000	2000	2500	2500	2500
Resistance Min	ohm	0.3	1	1.5	2	2
Resistance Max		ohm	1 meg	2 meg	3 meg	4 meg
Mechanics:	A	mm	54	71	88	104
	$\mathrm{~B} e \mathrm{gm}$					
Weight	mm	46	63	80	96	114

ORDERING INFORMATION

$\mathrm{E}=\mathrm{RoHS}$ compliant
TLIO4KUR50 0 Size Tolerance Power OT Onms TL54 $=54 \mathrm{~mm} \quad \mathrm{~F}=1 \% \quad$ Blank $=$ standard $\mathrm{R} 500=0.50$ $\begin{array}{llll}\text { TL71 } & =71 \mathrm{~mm} & \mathrm{~J}=5 \% & \mathrm{U}=\mathrm{ultra} \\ \mathrm{TL} 88 & =88 \mathrm{~mm} & \mathrm{~K}=10 \% & 10 \mathrm{RO}=10.0\end{array}$ $\begin{array}{lll}\text { TL88 }=88 \mathrm{~mm} & \mathrm{~K}=10 \% & 1 \mathrm{KOO}=1,000\end{array}$ $\begin{array}{ll}\text { TL104 } & =104 \mathrm{~mm} \\ \mathrm{TL} & 122=122 \mathrm{~mm}\end{array} \quad 1 \mathrm{M} 00=1,000,000$ TL122 $=122 \mathrm{~mm}$

Rolls
TL Series

*For adjacent taps,
$\mathrm{C}=0.665$ " $(16.9 \mathrm{~mm})$

Series	Ultra* Wattage	$\begin{gathered} \text { Std** } \\ \text { Wattage } \end{gathered}$	Ohm Range	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (mm) } \end{gathered}$	Operating Voltage VAC	Dielectric Withstanding Voltage VAC
TL54	35	27	0.3-1 Meg	54	46	1200	2500
TL71	96	71	1.0-2 Meg	71	63	1200	2500
TL88	155	114	1.5-3 Meg	88	80	1200	2500
TL104	215	158	2.0-4 Meg	104	96	1200	2500
\dagger TL122	275	202	2.0-4 Meg	122	114	1200	2500

* For properly heat sinked, untrimmed resistors - see chart
** For properly heat sinked, trimmed resistors - see chart
\dagger Power Ratings are theoretical. Consult Factory for details.

THERMAL RESISTANCE				
	TL54	TL71	TL88	TL104
Ultra Power(10\% Tolerance)	1.26	0.53	0.34	0.25
Std Power (5\% - 3\% Tolerance)	1.67	0.70	0.45	0.33

Consult factory for multiple tap options in common, isolated, and special configurations.

Modular Heat Sinkable Thick Film Power

maximum and Nominal power ratings for ULtra power and standard power resistors

TL54

TL71

TL1 22

TL88

Subscribe to our

 New Product Bulletin at ohmite.comOhmite's TAP600 delivers 600 watts of reliable power to a variety of power conditioning, power transmission, and power control applications. These resistors can be designed for liquid or air cooled heat sink systems. Applications include variable speed drives, power supplies, robotics, motor control, and other control devices.

FEATURES

- Dielectric Strength up to 12 KV
- Special Design for Low Inductance and Capacitance Values
- Easy Termination to Contacts with M5 Screws (not included)

SPECIFICATIONS

Electrical

Resistance Values: 0.5Ω to 100K Ω
Resistance Tolerance: $\pm 10 \%$ Std., 5% available on request.
Temperature Coefficient: $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (others upon request)
Maximum Working Voltage: $5,000 \mathrm{~V}$ DC, higher voltage on request, not exceeding max. power

Power Rating: 600 W at $70^{\circ} \mathrm{C}$ heat sink temperature or $85^{\circ} \mathrm{C}$ bottom case temperature. This value is only valid by using a thermal conduction to the heat sink Rth -cs $<0.025^{\circ} \mathrm{C} / \mathrm{W}$.
The value can be reached by using thermal transfer compound with a heat conductivity of $1 \mathrm{w} / \mathrm{mk}$. The flatness of the cooling plate must be better than 0.05 mm overall. The roughness of the surface should not exceed $6.4 \mu \mathrm{~m}$.
Dielectric Strength Voltage:
6 k Vrms, 50 Hz , 1 min standard; up to 12 k Vrms available
Single Shot Voltage: Up to 12KV
Normwave (1.5/50 $\mu \mathrm{sec}$)
Insulation Resistance: 10G Ω
min. at 500V
Creeping Distance: 42 mm min.
Air Distance: 14 mm min.
Inductance: $\leq 80 \mathrm{nH}$
Capacitance/Mass: ≤ 110 pF
Capacitance/Parallel: $\leq 40 \mathrm{pF}$
Operation Temperature:
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max. Torque for Contacts: 2 Nm
Max. Torque for Mounting: 1.8 Nm
Derating (thermal resist.):
$8.73 \mathrm{~W} /{ }^{\circ} \mathrm{C}\left(0.115^{\circ} \mathrm{C} / \mathrm{W}\right)$

PULSE-FORMS

E-function, time between two pulses: 1 sec .

	PERFORMANCE DATA	
	Method	Typical Results $-\Delta \mathbf{R}$
Test	$1000 \mathrm{~W} / 10 \mathrm{Sec} . @ 70^{\circ} \mathrm{C}$	0.4%
Short Time Overload	$56 \mathrm{Days} / 40^{\circ} \mathrm{C} / 95^{\circ} \mathrm{C}$	0.25%
Humidity Steady State	$-55 /+125 / 5 \mathrm{Cycles}$	0.20%
Temp. Cycling	$40 \mathrm{~g} / 4,000 \mathrm{Times}$	0.25%
Shock	$2-500 \mathrm{~Hz} / 10 \mathrm{~g}$	0.25%
Vibrations	$\mathrm{Pn} 30 \mathrm{~min} .0 \mathrm{~N} / 30 \mathrm{~min} .0 \mathrm{FF}$	0.40%
Load Life 1,000 Cycles	200 N	0.05%
Terminal Strength of Contacts		

DERATING GURVE

STANDARD VALUES FOR TAPGOO SERIES

1.0	15	500
2.0	30	1000
3.0	50	2500
4.0	75	3000
5.0	100	5000
10	300	10,000

Ohmite's TAP800 Series dissipates 800 watts of power when used with a liquid or air cooled heat sink system. The TAP800 rounds out 600 watt (TAP600) and 1000 watt (TAP1000) product offerings. Applications include variable speed drives, power supplies, robotics, motor control, control devices, and other power designs.

FEATURES

- Electric support is high alumina content ceramic metallized on the bottom for ideal heat transfer and optimum discharge.
- Encapsulated with a special resin filled epoxy casing with a large creepage distance to mass, large air distance between terminals, and a high insulation resistance (CTI 600).
- Resistive element is specially designed for low inductance and capacitance. The element provides stable performance in addition to high wattage and pulse loading capability.
- Contacts allow for easy load connecting with M4 or M5 screws (not included).
- Materials meet the requirements of UL94-V0

SPECIFICATIONS

Electrical
Resistance Values: 1Ω to $10 \mathrm{~K} \Omega$

- Resistance Tolerance: $\pm 5 \%$ to $\pm 10 \%$
- Temperature Coefficient: $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (others upon request)
- Maximum Working Voltage: $5,000 \mathrm{~V}$ DC, higher voltage on request, not exceeding max. power
- Short Time Overload: 1,200W at $70^{\circ} \mathrm{C}$ for 10 sec., $\Delta \mathrm{R}=0.4 \%$ max.
- Power Rating: 800 W at $85^{\circ} \mathrm{C}$ Bottom case temperature.
- Peak Current: up to 1500 amp . depending on pulse length and frequency Please ask for details
- Electric Strength Voltage: $6 \mathrm{kVrms}, 50 \mathrm{~Hz}$,upto 12 kVrms on special request.
- Single Shot Voltage: up to 12 kV Normwave (1.5/50 $\mu \mathrm{sec}$)
- Partial Discharge:4KVrms, $<10 \mathrm{pC}$, up to 7 kV on special request
- Insulation Resistance: $10 \mathrm{G} \Omega$ min. at 500 V
- Creeping Distance: 42 mm min.
- Air Distance: 14 mm min.
- Inductance: 80 nH
- Capacity/Mass: 110pF
- Capacity/Parallel: 40pF
- Operation Temperature: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Max. Torque for Contacts: 2 Nm
- Max. Torque for Mounting: 1.8 Nm M4 screws (not included)
Derating: $8.73 \mathrm{~W} /{ }^{\circ} \mathrm{K}\left(0.115^{\circ} \mathrm{K} / \mathrm{W}\right)$
Power Rating: 800 W at $85^{\circ} \mathrm{C}$ bottom case temp. This value is only valid by using a thermal conduction to the heatsink Rthcs $<0.025^{\circ} \mathrm{K} / \mathrm{W}$. This value can be reached by using thermal transfer compound with a heat conductivity of $1 \mathrm{~W} / \mathrm{mK}$. The flatness of the cooling plate must be better than 0.05 mm overall. The roughness of the surface should not exceed $6.4 \mu \mathrm{~m}$.

STANDARD	VALUES	
1.0	100	1000
5.0	220	2700
10	390	3000
15	500	5000
50	680	10,000

PULSE-FORMS

E-function, time between two pulses: 1 sec .

	PERFORMANCE DATA	
Test	Method	
Short time overload	$1,000 \mathrm{~W} / 10 \mathrm{sec}$	Typical Results $-\Delta \mathbf{R}$
Humidity Steady State	56 days $/ 40^{\circ} \mathrm{C} / 95 \%$	0.4%
Temp. Cycling	$-55 /+125 / 5$ cycles	0.25%
Shock	$40 \mathrm{~g} / 4,000$ times	0.20%
Vibration	$2-500 \mathrm{~Hz} / 10 \mathrm{~g}$	0.25%
Load Life	Pn 30 min. on $/ 30 \mathrm{~min}$ off, $1,000 \mathrm{cyl}$	0.25%
Terminal Strength	200 N	0.40%

DERATING CURVE

TAP1000 Series

1000 Watt Heat Sinkable Planar

PERFORMANGEDATA		
Test	Rating	
	Continuous	Pulse
Rated Power, max. current and heat sink plate temperature limited	1000W	
Operating Voltage	$\sqrt{\mathrm{P}^{*} \mathrm{R}}$	N/A
Max. Applied Voltage, ohms law limited	223 V	2000VDC
Max. Current	10A	53.33A
Critical Resistance; below this resistance max power has to be de-rated due to exceeding max current	10 ohms	

Test	Method	Maximum $\Delta \mathbf{R}$
Short Time Overload	$1.14 \times \sqrt{\mathrm{P}^{*} \mathrm{R}} / 10 \mathrm{sec} @ 70^{\circ} \mathrm{C}$	Max \% Δ Rsto $= \pm(2 \%+0.05 \Omega)$
Moisture Resistance	1000 hrs @ $40^{\circ} \mathrm{C}, 90-95 \% \mathrm{RH}$	$\leq 1 \%$
Thermal Shock	MIL-STD-202, Method 107	MIL-STD-202, Method 107
Vibration, elec.	MIL-STD-202, Method 201	$\pm 2 \%$ Resistance
Vibration, mech.	MIL-STD-202, Method 201	No Loose Terminal Screws
Load Life, 1000 Hrs	90 min ON / 30 min OFF	$\leq 1 \%$
Pulse Tolerance 20,000 Pulses	$52 \mu \mathrm{~F} @ 2 \mathrm{KV} / 60 \mathrm{sec}$ intervals, 104J	$\leq 1 \%$
Dielectric Strength	6KVDC for 1 minute	$\leq 1 \%$

ORDERING INFORMATION

Check product availability at WWW.ohmite.com

The TAP1000 Series delivers 1000 watts of continuous power when properly mounted to a liquid cooled heat sink (based on $70^{\circ} \mathrm{C}$ ambient temperature)

Applications include power conditioning, power distribution, power conversion, and power control.

FEATURES

- Dissipates 1000 Watts @ $70^{\circ} \mathrm{C}$ Mounting Plate Temperature
- High Energy Rating
- Low Inductance
- Resistor Element Electrically Isolated
- High Dielectric Strength
- Small Footprint

APPLICATIONS

- Power semiconductor balancing
- Motor control
- Inrush Current Limiting

SPECIFICATIONS Material
Resistor Element: Thick Film on Alumina Substrate

Electrical

Power Rating: 1000 watt @ $70^{\circ} \mathrm{C}$ Mounting Plate
Resistance Values: 2.5Ω to 50Ω
Resistance Tolerance: $+10 \%$ std.
Max Operating Voltage: 2000VDC
Temperature Coefficient: $\pm 250 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Dielectric Strength: 6KV Standard, up to 12 KV available Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Case

Terminal Screws: \#10-32
Max Contacts Torque: 10 in-lb
Mounting Screws: \#8-32
Max Mounting Torque: 15 in-lb Creepage Distance:
$50 \mathrm{~mm} \pm 1 \mathrm{~mm}$ (min)
Thermal Resistance:
$0.05^{\circ} \mathrm{C} /$ Watt
DERATING CURVE

APPLICATION NOTES

Proper heat sinking techniques are essential to performance of a TAP1000 resistor. Pleased follow these guidelines when designing TAP1000 system:

- Heat sink compound must always be used. Phase change material is preferred over silicon pastes.
- Heats sink plate (base plate of the resistor) temperature must be monitored to establish proper de-rating. Best technique is to attach a thermocouple to the side of the base plate of the resistor. Temperature of plastic housing or heat sink cannot be used to establish rating of the resistor. Usage of laser thermometers should be avoided
- Due to very high power density, only liquid cooled heat sinks are recommended for applications when $>300 \mathrm{~W}$ power rating is desired.
- Properly designed heat sink should have more than 2 cooling pipes under the surface of the TAP1000 resistor. Hydroblok-1000, a 4 pass aluminum heat sink (http://www.d6industries.com/heatsinks.htm) is an example of properly designed heat sink.

STANDARD PART NUMBERS FOR TAP1000 SERIES

Ohms	Part Number 10\% Tolerance	Ohms	Part Number 10\% Tolerance
3	TA1KOPH3R00KE	15	TA1KOPH15ROKE
4	TA1KOPH4R00KE	20	TA1KOP H2OROKE
5	TA1KOPH5ROOKE	25	TA1KOPH25ROKE
8	TA1K0PH8R00KE	30	TA1KOPH30ROKE
10	TA1K0PH10R0KE	50	TA1K0PH50ROKE

The TFS Series has been specifically developed to absorb large amounts of energy by efficient use of its compact mass. Ideal for medical surge protection applications, these thick film reisistors offer noninductive performance in an axial package.

Uses include power supply conversion, electron microscopes, X-ray systems, highresolution CRT displays, and geophysical instrument related products.

FEATURES

- Appropriate for medical surge protection applications
- Ideal to replace standard carbon composition resistors
- Custom dimensions, values, tolerances and characteristics available
- For energy rating information, visit www.ohmite.com

SPECIFICATIONS
Material
Resistive Element: Thick Film
Encapsulation: Screen Printed Glass

Electrical

Resistance Value: 100Ω up to 100K Ω

Temperature Coefficient:

 $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$Tolerance: 1\%, 2\%, 5\%, 10\%
Operating Temperature: $-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Test: VDE 0750 (Pulse Duration 10 msec)

Type	$\underset{\text { (KV) }}{\mathbf{U}}$	Energy* (J)	Power (W)	Dimensions (mm)				
				A	B	C	H	E
TFSA	3	6	0.5	9	5.5	10	0.7	1.1
TFSB	3.5	9	0.5	11	5.5	10	0.7	1.1
TFSC	4	11	0.75	13	5.5	10	0.7	1.1
TFSD	7	33	1	21	8	10	0.9	1.3
TFSE	7	44	1.5	21	10.5	10	0.9	1.3
TFSF	11	55	2	26	10.5	10	0.9	1.3

*Published energy rating is for 10 ms pulse. For shorter pulses energy rating has to be derated according to Max. Individual Pulse Rating chart (left) and Single Pulse Energy Rating considerations (see ohmite.com).

NOTES

- Momentary overload capability is 5 times rated power for 1 second or 2 times rated power for 5 seconds. Always verify designs with pulse and surge conditions through thorough testing of the design at maximum operating temperature and maximum pulse loading (or some margin above maximum pulse loading).
- Damage to the resistor by excessive pulse loading is generally indicated by an increasing resistance of the resistor.
- Energy ratings are based on single pulses (at least 1 minute between pulses).
- For multiple pulse applications the energy pulse rating should be reduced and the average power should not exceed the nominal power rating of the selected model.

Our friendly Customer
 Service team can be reached at $866-9-0 H M I T E$

Check product availability at WWW.ohmite.com

Precision Thick Film Planar

Ohmite's Slim-Mox provides stable performance for a wide range of resistance values, with voltage ratings up to 25 K . Low temperature coefficients are available for high stability circuit applications. The spacesaving planar package offers and alternative to traditional high voltage resistors.

A P P L I C A T I O N S

- HV power supplies
- Medical instrumentation
- Current pulse limiters
- Ionization chambers

FEATURES

- High dielectric \& low outgassing epoxy coating
- Low resistor noise
- Non inductive
- RoHS compliant
- Radial terminals

S PECIFICATIONS Material
Resistor Element: Thick film on Alumina
Coating: Epoxy

Electrical

Resistance Range:
100 Ohms to 5,000M

Ohmite Series	Resistance Range (Ohms)	$\begin{aligned} & \text { Power } \\ & \text { @25 } \end{aligned}$	Max. Operating Voltage	A max. (in/mm)	$\underset{\text { (in/mm) }}{\boldsymbol{B} \text { max. }}$	$\begin{gathered} \mathrm{C}+ \pm 0.025 \\ (\mathrm{in} / \mathrm{mm}) \end{gathered}$	$\begin{aligned} & \mathrm{D} \pm 0.002 \\ & (\mathrm{in} / \mathrm{mm}) \\ & \hline \end{aligned}$	Capac itance (pf)
SLIM-MOX100	100Ω to 500 M	0.25W	1.5 KV	0.30 " / 7.62	0.30 " 7.62	$0.10^{\prime \prime} / 2.54$	$0.025^{\prime \prime} 0.635$. 00
SLIM-MOX101	100s to 1,000M	0.50W	2.0kV	0.34 " / 8.64	0.33 "/ 8.38	0.20" / 5.08	0.025" / 0.635	. 00
SLIM-MOX102	200Ω to $5,000 \mathrm{M}$	1.00	Ok	$0.34^{\prime \prime} / 8.64$	0.58"/ 14.73	0.40 " / 10.1	$0.032^{\prime \prime} / 0.8$	0.90
-10X103	250Ω to $5,000 \mathrm{M}$	1.2	7.5 KV	0.34 " / 8.64	0.83 "	0.60"	$0.032^{\prime \prime} / 0.8$	
SLIM-MOX104	500Ω to $5,000 \mathrm{M}$	1.50W	10.0kV	0.34 " / 8.64	1.08" / 27.43	0.90" / 22.8	$0.032^{\prime \prime} / 0.8$	0.70
SLIM-MOX106	750Ω to $5,000 \mathrm{M}$	2.00W	15.0kV	0.34 " 8.64	1.58 " / 40.13	$1.40^{\prime \prime} / 35.56$	$0.032^{\prime \prime} / 0.813$	0.65
SLIM-MOX108	1 K to $5,000 \mathrm{M}$	2.50W	20.0kV	0.34 " / 8.64	2.08 " / 52.83	1.90 " / 48.26	0.032" 0.813	0.60
SLIM-MOX202	500Ω to 5,000M	1.50W	5.0KV	$0.59 " 14.99$	0.58 " / 14.73	0.40 " / 10.16	0.032" 0.813	1.10
SLIM-MOX204	1 K to $5,000 \mathrm{M}$	2.00W	10.0KV	$0.59 " 14.99$	1.08 " / 27.43	0.90 " / 22.86	$0.032^{\prime \prime} / 0.813$	0.80
SLIM-MOX206	2K to $5,000 \mathrm{M}$	2.50W	15.0kV	$0.59 " 114.99$	1.58 " / 40.13	1.40 " / 35.5	$0.032^{\prime \prime} / 0.813$	
SLIM-MOX208	2K to $5,000 \mathrm{M}$	3.00 W	20.0kV	0.59"/	2.08 " 52.	1.90" / 48	0.032	
SLIM-MOX210	3 k to 5 ,	3.50W	25.0kV	0.59 " 14.9	2.58 " / 65.53	2.40 " / 60.	$0.032^{\prime \prime} / 0.8$	
SLIM-MOX306	3K to 5,000	3.50W	15.0KV	0.84 " / 21.3	1.58" / 40.13	1.40" / 35.5	$0.032^{\prime \prime} / 0.8$	0.75
SLIM-MOX308	4K to 5,000	4.00W	20.0 KV	0.84 " / 21.34	2.08 " / 52.83	1.90" / 48.26	$0.032^{\prime \prime} / 0.813$	0.50
SLIM-MOX310	5 K to $5,000 \mathrm{M}$	4.50W	25.0kV	0.84 " / 21.34	2.58 " 65.53	2.40 " / 60.96	$0.032^{\prime \prime} / 0.813$	0.40
SLIM-MOX404	3K to 5,000M	3.00 W	10.0KV	1.09" / 27.69	1.08 " / 27.43	0.90 " / 22.86	$0.032^{\prime \prime} / 0.813$	1.00
SLIM-MOX408	5 K to 5,000M	5.00W	20.0KV	1.09" / 27.69	2.08 " 152.83	1.90 " / 48.26	$0.032^{\prime \prime} / 0.813$	0.80
SLIM-MOX410	5K to 5,000 M	5.5	25.0kV	1.09"	2.58 " 65.5	$2.40^{\prime \prime}$ / 60.96	$0.032^{\prime \prime} / 0.8$	
Contact Ohmite for custom configurations. *Maximum voltage and power rating determined by Ohm's law: $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$								

Contact Ohmite for custom configurations. *Maximum voltage and power rating determined by Ohm's law: $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$

Power Rating: 0.25 W to 5.5W

Voltage Rating: 1.5 KV to 25KV
Tolerance: 0.5% to 20%
Operating Temperature: $-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
Temperature Coefficient: See table on page 70

Slim-Mox Divider

Precision Thick Film Voltage

Ohmite Series	Resistance Range (Ohms)	$\begin{aligned} & \text { Power } \\ & \text { @25 } \end{aligned}$	Max. Operating Voltage	Maximum Ratio	$\begin{gathered} \text { C } \\ \pm .025 \end{gathered}$	$\underset{ \pm .025}{\mathrm{E}}$
SLIM-MOX103RD	1M to 5,000M	0.75W	5.0KV	5,000 : 1	0.60"/ 15.24	0.20 "/ 5.08
SLIM-MOX104RD	1M to 5,000M	1.00W	10.0KV	5,000 : 1	0.90 "/ 22.86	0.20"/5.08
SLIM-MOX106RD	1M to 5,000M	1.50W	12.0KV	5,000 : 1	1.40 "/ 35.56	0.20"/ 5.08
SLIM-M0X108RD	1M to 5,000M	2.00W	15.0KV	5,000 : 1	1.90"/ 48.26	0.60"/ 15.24
SLIM-MOX204RD	1 M to $5,000 \mathrm{M}$	1.50W	10.0KV	5,000 : 1	0.90 "/ 22.86	$0.20 " / 5.08$
SLIM-MOX206RD	1 M to $5,000 \mathrm{M}$	2.00W	12.0KV	5,000 : 1	1.40 "/ 35.56	0.20 "/ 5.08
SLIM-MOX208RD	1M to 5,000M	2.50W	20.0KV	5,000 : 1	1.90"/ 48.26	0.40 "/ 10.16
SLIM-MOX210RD	1 M to $5,000 \mathrm{M}$	3.00W	25.0KV	5,000: 1	2.40 "/ 60.96	0.20"/ 5.08
SLIM-MOX306RD	1M to 5,000M	3.00 W	12.0KV	5,000 : 1	1.40"/ 35.56	0.30"/7.62
SLIM-M0X308RD	1M to 5,000M	3.50 W	20.0KV	5,000 : 1	1.90"/ 48.26	0.30"/ 7.62
SLIM-MOX310RD	1M to 5,000M	4.00W	25.0KV	5,000 : 1	2.40 "/ 60.96	0.20"/ 5.08
SLIM-M0X408RD	1 M to 5,000M	4.50W	20.0KV	5,000 : 1	1.90"/ 48.26	0.30"/ 7.62
SLIM-M0X410RD	1M to 5,000M	5.00W	25.0KV	5,000 : 1	2.40 "/ 60.96	0.20"/ 5.08
Contact Ohmite for custom configurations.						

Multiple taps are provided on the Slim-Mox RD for use in advanced circuit designs. Tight ratio tolerances make these resistors ideal for precision applications requiring consistent performance.

F E A T U R E S

- Custom configurations are available. Contact Ohmite with your specifications
- RoHS compliant

SPECIFICATIONS

Material

Resistor: Thick film on Alumina

Electrical

Ratio tolerances: 0.5\% to 5\%
Temp. coefficient tracking:
TCR tracking to 10ppm and VCR tracking to 1 ppm

A complete description of the SLIM-MOX
Divider is required. EXAMPLE:
$\mathrm{R}_{\mathrm{T}}=500 \mathrm{M} \Omega 5 \%$
$\mathrm{R}_{1}=499.5 \mathrm{M} \Omega 5 \%$
$R_{2}=500 \mathrm{~K} \Omega 1 \%$
Ratio $=R_{T} / R_{2}=1,000: 1,1 \%$
To specify Slim-Mox Dividers,
please see our website at:
www.ohmite.com/dividers

The Slim-Mox HT provides a higher power rating for high ambient temperature environments. Appropriate for mounting near heat generating components. The Slim-Mox HT is finished with a rugged silicone coating suitable for most environments.

FEATURES

- Outstanding voltage coefficient
- High temperature silicone coating
- Low resistor noise
- Noninductive
- Custom configurations are available. Contact Ohmite with your specifications
- RoHS compliant
- Radial Terminals

APPLICATIONS

- HV power supplies
- Medical instrumentation
- Current pulse limiters
- Ionization chambers

SPECIFICATIONS
Material
Resistor Element: Thick film on Alumina
Coating: Silicone

Electrical

Resistance Range:
100Ω to 5,000M
Power Rating: 0.25 W to 9.0 W
Voltage Rating: 1.5 KV to 25 KV
Tolerance: 0.5% to 20%
Operating Temperature:
$-55^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$

High Temperature Thick Film Precision

Ohmite Series	Resistance Range (Ohms)	Power @25 ${ }^{\circ} \mathrm{C}$	Voltage Rating	A max. (in/mm)	B max. (in/mm)	$\begin{gathered} \mathrm{C} \pm 0.025 \\ (\mathrm{in} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{D} \pm 0.002 \\ (\mathrm{in} / \mathrm{mm}) \end{gathered}$
SLIM-MOX100	100Ω to 500M	0.40W	1.5KV	0.20 " / 5.08	0.20 " / 5.08	0.10 " / 2.54	0.025 " / 0.635
SLIM-MOX101	100Ω to $1,000 \mathrm{M}$	0.75W	2.0 KV	0.25 " / 6.35	0.25 " / 6.35	0.20 " / 5.08	$0.025 " / 0.635$
SLIM-MOX102	200Ω to $5,000 \mathrm{M}$	1.50W	5.0KV	0.25 " / 6.35	0.50 " / 12.70	0.40" / 10.16	0.032 " / 0.813
SLIM-M0X103	250Ω to $5,000 \mathrm{M}$	2.00W	7.5KV	0.25 " / 6.35	0.75 " / 19.05	0.60" / 15.24	0.032 " / 0.813
SLIM-MOX104	500Ω to $5,000 \mathrm{M}$	2.50W	10.0KV	0.25 " / 6.35	1.00" / 25.40	0.90" / 22.86	0.032 " / 0.813
SLIM-MOX106	750Ω to $5,000 \mathrm{M}$	3.25 W	15.0KV	0.25 " / 6.35	1.50" / 38.10	1.40" / 35.56	0.032 " / 0.813
SLIM-MOX108	1 K to 5,000M	4.25W	20.0KV	0.25 " / 6.35	2.00 / / 50.80	1.90" / 48.26	0.032 " / 0.813
SLIM-MOX202	500Ω to $5,000 \mathrm{M}$	2.50W	5.0 KV	0.50 " / 12.70	0.50" / 12.70	0.40" / 10.16	0.032 " / 0.813
SLIM-MOX204	1 K to $5,000 \mathrm{M}$	3.25 W	10.0KV	0.50" / 12.70	1.00" / 38.10	0.90" / 22.86	0.032 " / 0.813
SLIM-MOX206	2 K to 5,000M	4.25W	15.0KV	0.50 / 12.70	1.50" / 38.10	1.40" / 35.56	0.032 " / 0.813
SLIM-MOX208	2K to 5,000M	5.00W	20.0KV	0.50 / 12.70	2.00 " / 50.80	1.90" / 48.26	0.032 " / 0.813
SLIM-MOX210	3 K to 5,000M	5.75W	25.0KV	0.50" / 12.70	2.50" / 63.50	2.40" / 60.96	0.032 " / 0.813
SLIM-MOX306	3 K to 5,000M	5.50W	15.0KV	0.75 " / 19.05	1.50" / 38.10	1.40" / 35.56	0.032 " / 0.813
SLIM-MOX308	4 K to 5,000M	6.75W	20.0KV	0.75 " / 19.05	2.00 " / 50.80	1.90" / 48.26	0.032 " / 0.813
SLIM-M0X310	5 K to 5,000M	7.50W	25.0KV	0.75 " / 19.05	2.50" / 63.50	2.40" / 60.96	0.032 " / 0.813
SLIM-M0X404	3 K to 5,000M	5.00W	10.0KV	1.00" / 25.40	1.00" / 25.40	0.90" / 22.86	0.032 " / 0.813
SLIM-M0X408	5 K to 5,000M	8.25W	20.0KV	1.00" / 25.40	$2.00 " / 50.80$	1.90" / 48.26	0.032 " / 0.813
SLIM-M0X410	5K to 5,000M	9.00 W	25.0KV	1.00" / 25.40	2.50 / 63.50	2.40" / 60.96	0.032 " / 0.813
Contact Ohmite for custom configurations.							

Slim-Mox HT RD resistor dividers complete the SlimMox family with the high temperature divider configuration. These resistors are useful wherever multiple voltage drops are needed in a circuit. Designed to customer specifications, the Slim-Mox HT RD resistor utilizes our thick film on alumina technology to offer flexible termination schemes.

FEATURES

- High Temperature Operation
- RoHS compliant
- Radial Terminals

SPECIFICATIONS

Material

Resistor: Thick film on Alumina Electrical

- Ratio tolerances: 0.5% to 5%
- Temp. coefficient tracking: TCR tracking to 10ppm and VCR tracking to 1ppm
- Custom ratios and terminal configurations are available. Contact your Tech. Sales Rep with your specification.

Slim-Mox HT Divider

High Temperature Thick Film Voltage Divider
A complete description of the SLIM-MOX
Divider is required. EXAMPLE:
$\mathrm{R}_{\mathrm{T}}=500 \mathrm{M} \Omega 5 \%$
$\mathrm{R}_{1}=499.5 \mathrm{M} \Omega 5 \%$
$\mathrm{R}_{2}=500 \mathrm{~K} \Omega 1 \%$
$\mathrm{R}_{2}=500 \mathrm{~K} \Omega 1 \%$
Ratio $=\mathrm{R}_{\mathrm{T}} / \mathrm{R}_{2}=1$
Ratio $=R_{T} / R_{2}=1,000: 1,1 \%$
To specify Slim-Mox Dividers, please see our website at:
www.ohmite.com/dividers

Ohmite Series	Resistance Range (Ohms)	Power @ $25^{\circ} \mathrm{C}$	Voltage Rating	Maximum Ratio	$\begin{gathered} \mathrm{C} \pm 0.025 \\ (\mathrm{in} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \pm 0.025 \\ (\mathrm{in} / \mathrm{mm}) \end{gathered}$
SLIM-M0X103RD	1M to 5,000M	1.25W	5.0KV	5,000 : 1	0.60 " / 15.24	0.20 " / 5.08
SLIM-M0X104RD	1 M to 5,000M	1.50W	10.0KV	5,000 : 1	0.90" / 22.86	0.20 " / 5.08
SLIM-M0X106RD	1 M to 5,000M	2.50W	12.0KV	5,000 : 1	1.40" / 35.56	0.20 " / 5.08
SLIM-M0X108RD	1 M to 5,000M	3.25 W	15.0KV	5,000 : 1	0.90" / 22.86	0.60 " / 15.24
SLIM-MOX204RD	1 M to 5,000M	2.50W	10.0KV	5,000 : 1	0.90 " / 22.86	0.20 " / 5.08
SLIM-MOX206RD	1 M to 5,000M	3.25 W	12.0KV	5,000 : 1	1.40" / 35.56	0.20 " / 5.08
SLIM-MOX208RD	1 M to 5,000M	4.25W	20.0KV	5,000 : 1	1.90" / 48.26	0.40 / 10.16
SLIM-MOX210RD	1 M to 5,000M	5.00W	25.0KV	5,000 : 1	2.40 " / 60.96	0.20 / 5.08
SLIM-MOX306RD	1M to 5,000M	4.50W	12.0KV	5,000 : 1	1.40" / 35.56	0.30 " / 7.62
SLIM-MOX308RD	1 M to 5,000M	5.00W	20.0KV	5,000 : 1	1.90" / 48.26	0.30 " / 7.62
SLIM-MOX310RD	1 M to 5,000M	5.75W	25.0KV	5,000 : 1	2.40 " / 60.96	0.20 " / 5.08
SLIM-MOX408RD	1 M to 5,000M	6.75 W	20.0KV	5,000 : 1	1.90" / 48.26	0.30 " / 7.62
SLIM-M0X410RD	1 M to $5,000 \mathrm{M}$	7.50W	25.0KV	5,000 : 1	2.40 " / 60.96	0.20 " / 5.08
Contact Ohmite for custom configurations.						

Temperature/Voltage Coefficients of Resistance

Performance Characteristics

Temperature Derating

TEMPERATURE/VOLTAGE GOEFFICIENTS OF RESISTANGE
Temp. Coeff. of Resistance ${ }^{\star}$

Resistor Series	$\begin{gathered} \quad \text { Ten } \\ 0^{\circ} \mathrm{C}-85^{\circ} \mathrm{C} \\ 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{gathered}$	Coeff. of Resis $85^{\circ} \mathrm{C}$ $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	ance* d above 100 PPM $/{ }^{\circ} \mathrm{C}$	Voltage Coeff < 2PPM/Volt	of Resistance** < 5PPM/Volt
SLIM-MOX100	100 to 300M	100Ω to 50 M	51 M to 500M	100Ω to 140 M	141M to 500M
SLIM-MOX101	100 to 800 M	100Ω to 100 M	101 M to 1,000M	100Ω to 270 M	271 M to 1,000M
SLIM-MOX102	200 to 1,500M	200 ${ }^{\text {do }}$ to 250 M	251M to 5,000M	200Ω to 640 M	641M to 5,000M
SLIM-MOX103	250 to 800M	250Ω to 440M	441 M to 5,000M	250Ω to $1,100 \mathrm{M}$	1,101M to 5,000M
SLIM-MOX104	500 to 2,500M	500Ω to 450M	451 M to 5,000M	500Ω to $1,100 \mathrm{M}$	1,101M to 5,000M
SLIM-MOX106	750 to 5,000M	750Ω to 675M	676M to 5,000M	750Ω to $1,600 \mathrm{M}$	1,601M to 5,000M
SLIM-MOX108	1 K to 2,500M	1 K to 375M	376 M to 5,000M	1 K to 940M	941M to 5,000M
SLIM-MOX202	500 to 1,500M	500Ω to 200M	201M to 5,000M	500Ω to 520M	521 M to 5,000M
SLIM-MOX204	1 K to 1,750M	1 K to 375M	376M to 5,000M	1 K to 950M	951M to 5,000M
SLIM-MOX206	2 K to 4,500M	2 K to 600M	601M to 5,000M	2 K to 1,500M	1,501M to 5,000M
SLIM-MOX208	2 K to 5,000M	2K to 1,000M	1,001M to 5,000M	2 K to 2,500M	2,501M to 5,000M
SLIM-MOX210	3 K to 5,000M	3K to 1,000M	1,001M to 5,000M	3 K to 2,600M	2,601M to 5,000M
SLIM-MOX306	3 K to 5,000M	3K to 1,000M	1,001M to 5,000M	3 K to 2,600M	2,601M to 5,000M
SLIM-MOX308	4 K to 5,000M	4K to 1,200M	1,201M to $5,000 \mathrm{M}$	4 K to 3,000M	$3,001 \mathrm{M}$ to $5,000 \mathrm{M}$
SLIM-MOX310	5 K to 5,000M	5K to 1,500M	1,501M to 5,000M	5 K to 4,000M	4,001M to $5,000 \mathrm{M}$
SLIM-MOX404	3 K to 5,000M	3 K to 1,100M	1,101M to 5,000M	3 K to 2,800M	2,801M to 5,000M
SLIM-MOX408	5 K to 5,000M	5K to 1,250M	1,251M to 5,000M	5 K to 3,000M	$3,001 \mathrm{M}$ to 5,000M
SLIM-MOX410	5 K to 5,000M	5 K to 1,200M	1,201M to 5,000M	5 K to 3,000M	$3,001 \mathrm{M}$ to $5,000 \mathrm{M}$
SLIM-MOX103RD	1 M to 800M	1 M to 70M	71M to 5,000M	1 M to 185M	186M to 5,000M
SLIM-MOX104RD	1 M to 2,500M	1M to 275M	276M to 5,000M	1M to 720M	721M to 5,000M
SLIM-MOX106RD	1 M to 5,000M	1M to 250M	251M to 5,000M	1M to 640M	641 M to 5,000M
SLIM-MOX108RD	1 M to $2,500 \mathrm{M}$	1M to 350M	351 M to 5,000M	1M to 875M	876 M to 5,000M
SLIM-MOX204RD	1 M to 1,750M	1 M to 300M	301 M to 5,000M	1 M to 750M	751 M to 5,000M
SLIM-MOX206RD	1 M to $4,500 \mathrm{M}$	1M to 1,750M	1,751M to 5,000M	1M to 4,500M	4,501M to 5,000M
SLIM-MOX208RD	1 M to 5,000M	1M to 625M	626M to 5,000M	1M to $1,550 \mathrm{M}$	1,551M to $5,000 \mathrm{M}$
SLIM-MOX210RD	1 M to 5,000M	1M to 950M	951M to 5,000M	1M to 2,400M	2,401M to 5,000M
SLIM-MOX306RD	1 M to 5,000M	1 M to 800M	801 M to 5,000M	1M to 2,000M	2,001M to 5,000M
SLIM-MOX308RD	1 M to 5,000M	1M to 1,200M	1,201M to 5,000M	1M to 2,600M	2,601M to 5,000M
SLIM-MOX310RD	1 M to 5,000M	1M to 1,000M	1,001M to 5,000M	1M to 3,900M	3,901M to 5,000M
SLIM-MOX408RD	1 M to 5,000M	1M to 1,600M	1,601M to 5,000M	1 M to 4,000M	4,001M to 5,000M
SLIM-MOX410RD	1 M to 5,000M	1M to 1,200M	1,201M to 5,000M	1 M to $3,000 \mathrm{M}$	$3,001 \mathrm{M}$ to $5,000 \mathrm{M}$

*Epoxy operating temp.: -55° to $110^{\circ} \mathrm{C}$; Silicone operating temp.: -55° to $180^{\circ} \mathrm{C}$
**VC's of <2PPM/Volt are available. Contact Ohmite with your requirement.

PERFORMANGE DATA

	P ER F OR M A N G E D A TA	
Characteristic	Test Method	Specification
Humidity	MIL-STD-202, Method 103B, Condition B	$\pm 0.25 \%$
Dielectric Withstanding Voltage	MIL-STD-202, Method 301, 750V	$\pm 0.25 \%$
Insulation Resistance	MIL-STD-202, Method 302, Condition A or B	$>10,000 \mathrm{M}$ or greater dry
Thermal Shock	MIL-STD-202, Method 107G, Condition B, B-1, or F	$\pm 0.20 \%$
Load Life	MIL-STD-202, Method 108A, Condition D	$\pm 1.0 \%$
Resistance to Solvents	MIL-STD-202, Method 215G	No degradation of coating or marking
Terminal Strength	MIL-STD-202, Method 211A, Condition A or B	$\pm 0.25 \%$
Shock (Specified Pulse)	MIL-STD-202, Method 213B, Condition I	$\pm 0.25 \%$
Vibration, High Frequency	MIL-STD-202, Method 204D, Condition D	$\pm .020 \%$
Power Conditioning	MIL-R-49462A, Par 4.8	$\pm 0.50 \%$
Solderability	MIL-STD-202, Method 208F	$>95 \%$ Coverage

DERATING

High-voltage Super Mox resistors have been developed to meet the precision temperature stability requirements of high-accuracy and high-voltage systems. Super Mox combines proprietary non-inductive resistance system and design to achieve low temperature coefficient, low voltage coefficients, high stability and increased high operating voltages. These resistors are designed to meet the demanding requirements of high voltage power supplies, electron microscopes, X-ray systems, high resolution CRT displays and geophysical instruments.

S PECIFICATIONS

Resistance Range: from $1 \mathrm{~K} \Omega$ to $50 \mathrm{G} \Omega$ on all models (contact Ohmite for 51G to 1T Ω)
Tolerances: $0.05 \%, 0.1 \%, 0.25 \%$, $0.5 \%, 1 \%, 2 \%, 5 \%, 10 \%$ (0.05\% avail. to $10 \mathrm{G}, 0.25 \%$ to 100 G , other on request)
Temperature Coefficients: 5,
$10,15,25,50$ and $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (10ppm $/{ }^{\circ} \mathrm{C}$ available to 10 G , $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to 100 G , other on request
Encapsulation: Silicone
Conformal Coating
Terminal Material: Gold Plated
Core Material: $\mathrm{Al}_{2} \mathrm{O}_{3}$ (96\%)
Resistor Material: Ruthenium Oxide
Operating Temperature: $-55^{\circ} \mathrm{C}$
to $225^{\circ} \mathrm{C}$ (extended temperature
range to $350^{\circ} \mathrm{C}$ available)

PERFORMANGE DATA		
Insulation Resistance	$>10,000 \mathrm{M} \Omega$	500 Volt $25^{\circ} \mathrm{C} 75 \%$ relative humidity
Dielectric Strength	$>1,000$ Volt	$25{ }^{\circ} \mathrm{C} 75 \%$ relative humidity
Thermal Shock	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.20 \% \text { max. } \end{aligned}$	MIL Std. 202, method 107 Cond. C (IEC 68-2-14)
Overload	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.25 \% \text { max. } \end{aligned}$	$1,5 \times$ Pnom, 5 sec (do not exceed max. voltage)
Moisture Resistance	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.25 \% \text { max. } \end{aligned}$	MIL Std. 202, method 106 (IEC 68-2-3)
Load Life	$\begin{aligned} & \Delta R / R<0.1 \% \text { typ., } \\ & 0.25 \% \text { max. } \end{aligned}$	1000 hours at rated power (IEC 115-1)

STANDARD PART NUMBERS			
Part Number	Watts	$\begin{aligned} & \text { Ohms } \\ & \text { 1\% tol. } \end{aligned}$	TCR
MOX91021004FVE	3.8 W	1 M	50ppm
MOX91025004FVE	3.8 W	5M	50ppm
MOX91021005FVE	3.8 W	10M	50ppm
MOX91022505FTE	3.8 W	25M	100ppm
MOX92021005FVE	5 W	10M	50ppm
MOX92025005FVE	5W	50 M	50ppm
MOX92021006FVE	5 W	100M	50ppm
MOX92021007FTE	5W	1000M	100ppm
MOX93021004FVE	7.5W	1 M	50ppm
MOX93025004FVE	7.5W	5M	50ppm
MOX93021005FVE	7.5W	10M	50ppm
MOX93022505FTE	7.5W	25M	100ppm
MOX94021005FVE	10W	10M	50ppm
MOX94025005FVE	10W	50M	50ppm
MOX94021006FVE	10w	100M	50ppm
MOX94021007FTE	10W	1000M	100ppm
MOX95021004FVE	13.5 W	1 M	50ppm
MOX95025004FVE	13.5 W	5M	50ppm
MOX95021005FVE	13.5 W	10M	50ppm
MOX95022505FTE	13.5W	25M	100ppm
MOX96021005FVE	16W	10M	50ppm
MOX96025005FVE	16W	50M	50ppm
MOX96021006FVE	16W	100M	50ppm
MOX96021007FTE	16W	1000M	100ppm
MOX97021004FVE	20W	1 M	50ppm
MOX97025004FVE	20w	5M	50ppm
MOX97021005FVE	20W	10M	50ppm
MOX97022505FTE	20W	25M	100ppm

Check product availability at WWW.ohmite.com

Uncoated resistor element pictured for demonstration purposes only. Finished product is coated with silicone.

Series	Power Rating (W)	Max. Oper Voltage	Res. Range (Ω)	Max. VCR*	Dimens L	ns (in./mm)
M0X910	3.80	15,000	1K-500M 500M-5G	$\begin{aligned} & 0.40 \\ & 0.75 \end{aligned}$	1.07/27.00	0.32/8.00
M0X920	5.00	21,000	$\begin{gathered} \text { 1K-1G } \\ 1 \mathrm{G}-10 \mathrm{G} \end{gathered}$	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	1.46/37.00	0.32/8.00
M0X930	7.50	30,000	$\begin{gathered} \text { 1K-1G5 } \\ 1 \text { G5-15G } \end{gathered}$	$\begin{aligned} & 0.15 \\ & 0.30 \end{aligned}$	2.05/52.00	0.32/8.00
M0X940	10.00	45,000	$\begin{gathered} 1 \text { K-2G5 } \\ \text { 2G5-25G } \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.15 \end{aligned}$	3.03/77.00	0.32/8.00
M0X950	13.50	60,000	$\begin{gathered} \text { 1K-3G } \\ 3 G-30 G \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.12 \end{aligned}$	4.02/102.00	0.33/8.30
M0X960	16.00	72,000	$\begin{gathered} 1 \mathrm{~K}-4 \mathrm{G} \\ 4 \mathrm{G}-40 \mathrm{G} \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.10 \end{aligned}$	4.80/122.00	0.34/8.50
M0X970	20.00	90,000	$\begin{gathered} \text { 1K-5G } \\ 5 \mathrm{G}-50 \mathrm{G} \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.08 \end{aligned}$	5.98/152.00	0.34/8.50

Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

STANDARDTEMP. COEFFICIENT OF RESISTANCE			
Series	$100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	300 PPM $/{ }^{\circ} \mathrm{C}$
MOX200	$100 \mathrm{~K}-100 \mathrm{M} \Omega$	$101 \mathrm{M}-1000 \mathrm{M} \Omega$	$1001 \mathrm{M}-1500 \mathrm{M} \Omega$
MOX300	$100 \mathrm{~K}-100 \mathrm{M} \Omega$	$101 \mathrm{M}-1000 \mathrm{M} \Omega$	$1001 \mathrm{M}-2500 \mathrm{M} \Omega$

PERFORMANGE DATA

Characteristic	Test Method	Specification
Short time overload	Rated Power $x 2.5,5 \mathrm{sec}$.	$\pm 0.5 \%$ max.
Resistance to soldering heat	$260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{sec}$.	$\pm 0.5 \% \mathrm{max}$.
Temperature cycling	$-55^{\circ} \mathrm{C} /+155^{\circ} \mathrm{C}, 5$ cycles	$\pm 0.5 \% \mathrm{max}$.
Withstanding voltage	$500 \mathrm{VDC}, 60 \pm 10 \mathrm{sec}$.	$\pm 0.5 \% \mathrm{max}$.
Insulation resistance	500 VDC	$10,000 \mathrm{M} \Omega$ or more
Moisture resistance	$40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}, 90-95 \% \mathrm{RH}, 1000 \mathrm{hr}$.	$\pm 1.5 \% \max$.
Load life	$70^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 1000 \mathrm{hr}$.	$\pm 2 \% \max$.

The Mini-Mox resistor is very versatile, covering a wide resistance range as well as a wide range of operating voltages. Provided with tolerances down to 1%, the Mini-Mox resistor works well in precision circuits.

S PECIFICATIONS

Material

Resistor: Metal Oxide
Coating: Epoxy
Core: Alumina
Terminals: Solder-coated axial

Electrical

Resistance Range: 100K to $1,500 \mathrm{M} \Omega$
Power Rating: 0.25 W to 0.5 W Voltage Rating: 500 V to $1,000 \mathrm{~V}$
Tolerance: 0.1% to 20%
Operating Temperature:
$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
Max. Overload Voltage: 1,000V (MOX200) $1,500 \mathrm{~V}$ (МОХ300)
Max. Pulse Voltage: 1,500V (MOX200) 3,000V (МОХ300)

DERATING

ORDERING INFORMATION		
M O K	01003	RoHS Tape and reel Compliant 2500 qty./reel std. $\mathbf{F}^{\prime} \mathbf{E}^{\frac{1}{R}}$
$\begin{aligned} & \text { TI } \\ & \text { Mini Mox Series } \\ & \text { MOX-20000 or } \\ & \text { MOX-30000 } \end{aligned}$	Ohms First 3 digits are significant; 4th digit is multiplier (\# of zeroes to follow). Examples: $10 \mathrm{R} 2=10.2 \mathrm{ohms}$ $1000=100$ ohms $1503=150,000$ ohms	Iolerance $\begin{array}{ll} B=0.10 \% & G=2 \% \\ C=0.25 \% & J=5 \% \\ D=0.5 \% & K=10 \% \\ F=1 \% & M=15 \% \\ & P=20 \% \end{array}$
Check product availability at WWW.ohmite.com		

> Check product availability using the Worldwide Inventory Search at ohmite.com

The Mini-Mox resistor is very versatile, covering a wide resistance range as well as a wide range of operating voltages. Provided with tolerances down to 0.5%, the Mini-Mox resistor works well in precision circuits.

SPECIFICATIONS

Material

Resistor: Metal Oxide
Coating: Silicone
Core: Alumina
Terminals: Solder-coated axial

Electrical

Resistance Range:

500 to 1 Teraohm
Power Rating: 0.35 W to 1.5 W
Voltage Rating: 2500 V to 7.5 KV
Tolerance: 0.5\% to 20\%
Operating Temperature:
$-55^{\circ} \mathrm{C}$ to $+220^{\circ} \mathrm{C}$
Temperature Coefficient:
$25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 0^{\circ}$ to $85^{\circ} \mathrm{C}$ available

F E A T URES

- Wide resistance ranges
- Silicone or epoxy coating
- Metal oxide resistive element

APPLICATIONS

- Avionics
- Medical electronics
- High gain feedback applications
- Current pulse limiters
- Vacuum and space application

Ohmite Series	Resistance Range (Ohms	Power @ $70^{\circ} \mathrm{C}$	Voltage Rating	Available Tolerances*	$A \pm 0.015^{\prime \prime}$ (in/mm)	B max. (in/mm)	Capacitance (pf)
- High-temperature (silicone coated)							
MOX-400-22	500Ω to $300,000 \mathrm{M}$	0.35W	2,500V	1\% to 20\%	0.520" / 13.21	0.140 " / 3.56	1.00
MOX-750-22	750Ω to $600,000 \mathrm{M}$	0.70W	5,000V	1\% to 20\%	0.820" / 20.83	0.140 / / 3.56	0.75
MOX1125-22	1K to 1,000,000M	1.40W	7,500V	1\% to 20\%	1.210" / 30.73	0.140" / 3.56	0.25

*Some tolerances are not available over the entire resistance range.

- Standard (e	ated)	@25 ${ }^{\circ}$					
MOX-400-23	500Ω to $300,000 \mathrm{M}$	0.75W	2,500V	0.5\% to 20\%	0.580" / 14.78	0.165" / 4.19	1.00
MOX-750-23	1 K to $600,000 \mathrm{M}$	1.00W	5,000V	0.5\% to 20\%	0.880 " / 22.35	0.165 "/ 4.19	0.75
MOX1125-23	1 K to 1,000,000M	1.50W	7,500V	0.5\% to 20\%	1.270" / 32.26	0.165" / 4.19	0.25

	P ERFORMANGE DATA		
	Test Method	Specification	
Characteristic	MIL-STD-202, Method 103B, Condition B	$\pm 0.25 \%$	
Humidity	MIL-STD-202, Method 302, Condition A or B	$\pm 0.25 \%$	
Dielectric Withstanding Voltage	MIL-STD-202, Method 301, 750V	$>10,000 \mathrm{M}$ or greater dry	
Insulation Resistance	MIL-STD-202, Method 107G, Condition B, B-1, or F	$\pm 0.20 \%$	
Thermal Shock	MIL-STD-202, Method 108A, Condition D	$\pm 2.0 \%$	
Load Life	MIL-STD-202, Method 215G \quad Acceptable for the Standard Series Only		
Resistance to Solvents	MIL-STD-202, Method 211A, Condition A or B	$\pm 0.25 \%$	
Terminal Strength	MIL-STD-202, Method 213B, Condition I	$\pm 0.25 \%$	
Shock (Specified Pulse)	MIL-STD-202, Method 204D, Condition D	$\pm .020 \%$	
Vibration, High Frequency	MIL-R-49462A, Par 4.8	$\pm 0.50 \%$	
Power Conditioning	MIL-STD-202, Method 208F	$>95 \%$ Coverage	
Solderability			

DERATING

Standard temperature/voltage coefficients of resistance

Resistor Series	Temp. Coeff. of Resistance ${ }^{*}$25 PPM $/{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$$50 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \quad 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$			Voltage Coeff. of Resistance** < 2PPM/Volt < 5PPM/Volt	
MOX-400	1K-1,500M	1K-450M	451M-30,000M	1K-1,000M	1,001M-100,000M
MOX-750	1K-1,500M	1K-900M	901M-70,000M	1K-2,000M	2,001M-100,000M
MOX1125	1K-1,500M	1K-1,350M	1,351M-100,000M	1K-3,000M	3,001M-100,000M

${ }^{*}$ Epoxy: $-55^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$; High Temp. Silicone: $-55^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$
**For tighter VCs please contact Ohmite.
ORDERING INFORMATION

Maxi-Mox

Precision Thick Film Axial Terminal High Voltage/High Resistance

Ohmite Series	Resistance Range (Ohms	Power @70ㄷ	Voltage Rating	Available Tolerances*	$\begin{gathered} \mathrm{A} \pm 0.015 " \\ (\text { in } / \mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { B max. } \\ & (\mathrm{in} / m m) \end{aligned}$	Capacitance (pf)
- High-temperature (silicone coated)							
MOX-1-12 250 ohms to $300,000 \mathrm{M}$		2.5W	10.0KV	1\% to 20\%	1.120" / 28.45	0.310" / 7.87	(0.75
MOX-2-12 500 ohms to $700,000 \mathrm{M}$		5.0W	20.0KV	1\% to 20\%	2.120 / 53.85	$0.310^{\prime \prime} / 7.87$	0.60
MOX-3-12 750 ohms to 1,000,000M		7.5W	30.0KV	1\% to 20\%	3.120" / 79.24	0.310 " / 7.87	0.50
MOX-4-12	1 K to 1,000,000M	10.0W	40.0KV	1\% to 20\%	4.120 / / 104.65	$0.310^{\prime \prime} / 7.87$	0.40
MOX-5-12 1.25K to 1,000,000M		12.5W	50.0KV	1\% to 20\%	5.120 / / 130.05	0.310" / 7.87	0.30
*Some tolerances are not available over the entire resistance range.							
- Standard (epoxy coated)		@ $25^{\circ} \mathrm{C}$					
MOX-1-13	250 ohms to $300,000 \mathrm{M}$	2.0W	10.0KV	0.1\% to 20\%	1.140" / 28.96	0.345 " / 8.76	0.75
MOX-2-13	500 ohms to $700,000 \mathrm{M}$	3.0 W	20.0KV	0.1\% to 20\%	2.140 " / 54.36	0.345 " / 8.76	0.60
MOX-3-13	750 ohms to 1,000,000M	4.0W	30.0KV	0.1\% to 20\%	3.140 " / 79.76	0.345 " / 8.76	0.50
$\begin{aligned} & \text { MOX-4-13 } \\ & \text { MOX-5-13 } \end{aligned}$	1 K to 1,000,000M	5.0W	40.0KV	0.1\% to 20\%	4.140" / 105.16	0.345 " / 8.76	0.40
	1.25K to 1,000,000M	6.0W	50.0KV	0.1\% to 20\%	5.140" / 130.56	0.345 " / 8.76	60.30
TEMPERATURE/VOLTAGE GOEFFICIENTS OF RESISTANGE							
Resistor Series	Temp. Coeff. of Resistance* s $\quad 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \quad 50 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \quad 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$				Voltage Coeff. of Resistance** < 2PPM/Volt < 5PPM/Volt		
$\begin{aligned} & \text { MOX-1 } \\ & \text { MOX-2 } \\ & \text { MOX-3 } \\ & \text { MOX-4 } \\ & \text { MOX-5 } \\ & \hline \end{aligned}$	1K-1,500M 1K-450M		451M-30,000M		2502-1,000M	1,001M-100,000M	
	$\begin{array}{ll} 1 \mathrm{~K}-1,500 \mathrm{M} & 1 \\ 1 \mathrm{~K}-1,500 \mathrm{M} & 1 \end{array}$	(\%-1,000	$1,001 \mathrm{M}-60,000 \mathrm{M}$$1,501 \mathrm{M}-90,000 \mathrm{M}$		$\begin{aligned} & 500 \Omega-2,600 \mathrm{M} \\ & 750 \Omega-4,000 \mathrm{M} \end{aligned}$	2,601M-200,000M$4,001 \mathrm{M}-300,000 \mathrm{M}$	
	$\begin{array}{ll}1 \mathrm{~K}-1,500 \mathrm{M} & 1 \mathrm{~K} \\ 1 \mathrm{~K}-1,500 \mathrm{M} & 1 \mathrm{~K}\end{array}$	1K-2,000M	2,001M-120,000M 2,501M-150,000M		$\begin{gathered} 1 \mathrm{~K}-5,300 \mathrm{M} \\ 125 \mathrm{~K}-6700 \mathrm{~N} \end{gathered}$	5,301M-400,000M 6,701M-500,000M	
		2,500M					

${ }^{\star}$ Epoxy: $-55^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$; High Temp. Silicone: $-55^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$
**For tighter VCs please contact Ohmite.

	P ERFOR MA NGE DATA		
Characteristic	Test Method	Specification	
Humidity	MIL-STD-202, Method 103B, Condition B	$\pm 0.25 \%$	
Dielectric Withstanding Voltage	MIL-STD-202, Method 301, 750V	$\pm 0.25 \%$	
Insulation Resistance	MIL-STD-202, Method 302, Condition A or B	$>10,000$ M or greater dry	
Thermal Shock	MIL-STD-202, Method 107G, Condition B, B-1, or F	$\pm 0.20 \%$	
Load Life	MIL-STD-202, Method 108A, Condition D	$\pm 1.0 \%$	
Resistance to Solvents	MIL-STD-202, Method 215G	Acceptable for High Reliability Series only	
Terminal Strength	MIL-STD-202, Method 211A, Condition A or B	$\pm 0.25 \%$	
Shock (Specified Pulse)	MIL-STD-202, Method 213B, Condition I	$\pm 0.25 \%$	
Vibration High Frequency	MIL-STD-202, Method 204D, Condition D	$\pm 0.20 \%$	
Power Conditioning	MIL-R-49462A, Par 4.8	$\pm 0.50 \%$	
Solderability	MIL-STD-202, Method 208F	$>95 \%$ Coverage	

DERATING

Maxi-Mox resistors are also versatile. Suitable for industrial applications requiring still more power for high voltage switching, industrial control, and high voltage current limiting.

FEATURES

- Wide resistance ranges
- Voltage rating to 50KV
- Power rating to 12.5 watts
- Silicone or epoxy coating

APPLICATIONS

- HV power supplies
- Power distribution
- Medical instrumentation
- Avionics

SPECIFICATIONS

Material

Core: Alumina
Resistor: Thick Film

Electrica

Resistance Range: 250Ω to 1 Teraohm
Power Rating: 2.0W to 12.5 W
Voltage Rating: 10KV to 50KV
Tolerance: 0.5% to 20%
Operating Temperature:
$-55^{\circ} \mathrm{C}$ to $+210^{\circ} \mathrm{C}$
Temperature Coefficient: $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 0^{\circ}$ to $85^{\circ} \mathrm{C}$ available

F E A T URES

- Wide resistance ranges
- Outstanding voltage coefficient
- 0.4" diameter ferrule, 0.25"-20 threaded end cap, or radial bands available
- Metal oxide resistive elements

APPLICATIONS

- Power Transmitters
- Pollution Control Systems
- Industrial Control Systems
- Current pulse limiters
- Vacuum and space application

SPECIFICATIONS
Material
Core: Ceramic.
Coating: Varnish

Electrical

Resistance Range: 20K to 1,000,000M
Power Rating: to 75W
Voltage Rating: to 60KV
Operating Temperature:
$-65^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
Temperature Coefficient:
25ppm: 0° to $85^{\circ} \mathrm{C}$;
50ppm -55° to $180^{\circ} \mathrm{C}$

The heavy duty construction of the Power-Mox series make them durable in most high voltage industrial applications. This product is well known for its high voltage ratings, low voltage coefficients, very high ohmic values, and resistor divider options. Terminations can be selected to adapt to most mounting schemes.

Power-Mox

RoHS
Precision Power Thick Film High Voltage/High Resistance Tubular

Ohmite Series	Resistance Range (Ohms)	Power @ $25^{\circ} \mathrm{C}$	Voltage Rating	Available Tolerances	$\begin{gathered} A \\ \pm 0.05 \end{gathered}$	$\stackrel{\text { B }}{\operatorname{Max}}$
MOX-F	1 K to 800,000M	25W	20KV	0.5, 1, 2, 5	3.0 " / 76.2	0.770 " / 19.56
MOX-G	1.5 K to $1,000,000 \mathrm{M}$	40W	30KV	0.5, 1, 2, 5	4.5 " / 114.3	0.770 " / 19.56
MOX-H	2K to 1,000,000M	50W	45KV	0.5, 1, 2, 5	6.0 " / 152.4	0.770 / / 19.56
MOX-J	3 K to 1,000,000M	75W	60KV	$0.5,1,2,5$	8.0 " / 203.2	0.770 / / 19.56
Some tolerances are not available over the entire resistance range.						

Ohmite Series	Resistance Range (Ohms)	$\begin{aligned} & \text { Power } \\ & \text { @25 } \end{aligned}$	Voltage Rating	Maximum Ratio	Ratio Tolerances	$\begin{gathered} \text { A } \\ \pm 0.05 \end{gathered}$	$\begin{gathered} \text { Bax } \end{gathered}$
MOX-FRD	20K to $2,500 \mathrm{M}$	15W	15KV	5,000:1	1, 2, 5\%	3.0 " / 76.2	0.770 " / 19.56
MOX-GRD	20K to $4,000 \mathrm{M}$	30W	25KV	5,000:1	1,2, 5\%	4.5 " / 114.3	0.770 " / 19.56
MOX-HRD	20K to 6,000M	40W	35KV	5,000:1	1, 2, 5\%	6.0 / / 152.4	0.770 " / 19.56
MOX-JRD	20K to $6,000 \mathrm{M}$	60W	50KV	5,000:1	1, 2, 5\%	8.0 / 203.2	0.770 " / 19.56

POWER-MOX ALTERNATE TERMINALS
"01" Lead
"Power-Mox RD" Series with silver terminations

"02" Lead
"Power-Mox" Series with radial band option

"03" Lead
"Power-Mox" Series with Ferrule end caps

"04" Lead

 "Power-Mox" Series with 1/4-20 threaded end caps

To specify Power-Mox Dividers, please see our website at: www.ohmite.com/dividers

$0.198^{\prime \prime} / 5.0 \mathrm{~mm}$
dia. max.

ORDERING INFORMATION

```
RX-1M1006FE- Roms Cliant
Hi-Meg Ohms L- Tolerance
First 3 digits are }\quad\textrm{D}=0.5
significant; 4th digit is }\quad\textrm{F}=1
significlant; 4th digit is }\quad\textrm{G}=2
mo follow). Examples: }\quad\textrm{J}=5
loR2=10.2\Omega
10R2=10.2\Omega 
lo
1503=150,000\Omega
1509=150G\Omega G Check product availability at
ll
```


Engineering Resistor Kits

HI-MEG DECADE SETS: GENERAL SPECIFICATIONS

Ohmite Series	Resistance Range (Ohms)	Available Tolerances
RX-1M-1	$1 \mathrm{M}-10,000 \mathrm{M}$	1%
RX-1M-2	$10 \mathrm{M}-10,000 \mathrm{M}$	1%
RX-1M-2	$1 \mathrm{M}-100,000 \mathrm{M}$	5%
RX-1M-3	$100 \mathrm{M}-10,000 \mathrm{M}$	1%
RX-1M-3	$100 \mathrm{M}-100,000 \mathrm{M}$	5%
RX-1M-3	$100 \mathrm{M}-1,000,000 \mathrm{M}$	10%

FEATURES

- Excellent for design engineering
- Fourteen different style/ resistance combinations
- Resistor kits are available in a 1\% tolerance
- Five resistors of each style: 70 resistors in all
- Resistors can be used in parallel or series circuits to achieve any resistance value within the resistance range
- Kits are shipped in high quality storage cases

These resistors can be calibrated for use as resistor standards. The calibration point (voltage) must be specified by the user. Contact Ohmite for further assistance.

	SLIM-MOX RESISTOR KITS		
Ohmite Style	Resistance Range	Voltage Rating	Power Rating
SLIM-MOX102	1 Meg	5.0 KV	1.0 W
SLIM-MOX102	5 Meg	5.0 KV	1.0 W
SLIM-MOX104	5 Meg	10.0 KV	1.5 W
SLIM-MOX102	10 Meg	5.0 KV	1.0 W
SLIM-MOX108	10 Meg	20.0 KV	2.5 W
SLIM-MOX102	50 Meg	5.0 KV	1.0 W
SLIM-MOX104	50 Meg	10.0 KV	1.5 W
SLIM-MOX104	100 Meg	10.0 KV	1.5 W
SLIM-MOX108	100 Meg	20.0 KV	2.5 W
SLIM-MOX102	500 Meg	5.0 KV	1.0 W
SLIM-MOX108	500 Meg	20.0 KV	2.5 W
SLIM-MOX102	$1,000 \mathrm{Meg}$	5.0 KV	1.0 W
SLIM-MOX104	$1,000 \mathrm{Meg}$	10.0 KV	1.5 W
SLIM-MOX108	$1,000 \mathrm{Meg}$	20.0 KV	2.5 W

	MINI-MOX RESISTOR KITS		
Ohmite Style	Resistance Range	Voltage Rating	Power Rating
MOX-300	1 Meg	$1,000 \mathrm{~V}$	0.50 W
MOX-200	2 Meg	500 V	0.25 W
MOXX-400-23	5 Meg	$2,500 \mathrm{~V}$	0.75 W
MOXX-300	10 Meg	$1,000 \mathrm{~V}$	0.50 W
MOX-200	20 Meg	500 V	0.25 W
MOX-300	30 Meg	$1,000 \mathrm{~V}$	0.50 W
MOXX-400-23	50 Meg	$2,500 \mathrm{~V}$	0.75 W
MOX125-23	100 Meg	$7,500 \mathrm{~V}$	1.50 W
MOX-400-23	200 Meg	$2,500 \mathrm{~V}$	0.75 W
MOX-300	300 Meg	$1,000 \mathrm{~V}$	0.50 W
MOX-400-23	500 Meg	$2,500 \mathrm{~V}$	0.75 W
MOX-750-23	$1,000 \mathrm{Meg}$	$5,000 \mathrm{~V}$	1.00 W
MOX-750-23	$2,000 \mathrm{Meg}$	$5,000 \mathrm{~V}$	1.00 W
MOX1125-23	$10,000 \mathrm{Meg}$	$7,500 \mathrm{~V}$	1.50 W

"SLIM-MOX" Kit series

These Hi-Meg resistors are designed for use in electrometer circuits where a high order of performance is required. These resistors achieve a high degree of accuracy and stability, and operate at this high performance level for an extended period of time. By being vacuum sealed in a glass envelope, these Hi-Megs are suitable for ultra-high vacuum applications.

FEATURES

- Glass sealed hermetric resistors
- Improved temperature stability
- Improved voltage stability
- Metal oxide resistive elements
- No outgassing
- RoHS compliant
- Calibration available

APPLICATIONS

- Ultra high vacuum
- Medical instrumentation
- Current pulse limiters
- Avionics

SPECIFICATIONS
Electrical
Resistance Range: 1M to $10,000,000 \mathrm{M}$
Power Rating: 0.5 W at $25^{\circ} \mathrm{C}$
Voltage Rating: 1.0KV
Temperature Coefficient: as low as $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$

Handling and Cleaning of RX-1M Resistors:
These glass encapsulated resistors, especially those of higher resistance value, require extraordinary cleanliness. These resistors should be handled by the terminals, unless gloves are worn. Fingerprints on the surface of the resistor will attract contaminants and moisture, which will cause a parallel resistance path, reducing the resistance value of the device. If cleaning should become necessary, use isopropyl alcohol and lightly wipe dry with lint free tissues such as Kimwipes.

Dimension "M"	
$0.875 "$	22.23 mm
$1.188 "$	30.16 mm
$1.5 "$	38.1 mm
3"	76.2 mm

Mounting: Panels to 1.25 " (31.75 mm) thick with 0.25-20 flat-head screws.

Rheostats

 (Potentiometers) WirewoundModel C
Mounting: Panels to $0.125^{\prime \prime}$ (3.18 mm) thick with 0.25-32 bushing and hex nut (0.063 " thick).

Models H, J, G, K, L $0.375^{\prime \prime}$ 9.53 mm

Mounting: Panels to 0.25 " $(6.35 \mathrm{~mm}$) thick with $0.375-32$ bushing and hex nut (0.094 " thick) (or with $10-32 \times 0.75$ F.H. screws for model L only).

See page 82 for knobs,
 dials, and other hardware

Dimensions for reference only; consult factory for details.
Since all rheostats/potentiometers are electro-mechanical devices, they are subject to mechanical wear and, therefore, have a finite life.

Model	Type	Watts	Ohmic range	Core	Max. Voltage (RMS)*	Behind panel "B" (In./mm)	$\begin{array}{r} \text { Diameter } \\ \text { "D" (In./mm) } \end{array}$	$\begin{gathered} \text { Dimension } \\ \text { C" (In./mm) } \end{gathered}$	Shaft torque	Rotation $\left(\pm 5^{\circ}\right)$
E	RES/REL	12.5	1.0-15K	open	305	0.688/17.46	0.875/ 22.23	0.594/15.08	1-6 oz. in.	300°
H	RHS/RHL	25	1.0-25K	open	500	1.375/34.93	1.560/ 39.62	0.940/23.88	$0.25-0.5 \mathrm{lb} . \mathrm{in}$.	300°
J	RJS	50	0.5-50K	open	750	1.375/34.93	2.31 / 58.67	$1.56 / 39.62$	$0.25-2 \mathrm{lb} . \mathrm{in}$.	300°
G	RGS	75	0.5-50K	open	900	1.750/44.45	2.75 / 69.25	$1.78 / 45.21$	$0.5-2 \mathrm{lb}$. in.	300°
K	RKS	100	0.5-50K	open	1000	1.750/44.45	3.125/79.38	1.91 /48.51	$0.5-2 \mathrm{lb}$. in.	300°
L	RLS	150	0.5-50K	open	1200	$2.000 / 50.8$	$4.00 / 101.60$	$2.28 / 57.91$	$0.5-3 \mathrm{lb}$. in.	300°
P	RPS	225	1.0-30K	open	1300	2.125/53.98	$5.00 / 127.00$	2.97 /75.44	2.5-4 lb. in.	310°
N	RNS	300	1.0-50K	open	1225	2.375/60.33	$6.00 / 152.40$	$3.44 / 87.38$	$2.5-5 \mathrm{lb}$. in.	320°
R	RRS	500	1.0-20K	open	1450	2.125/53.98	$8.00 / 203.20$	4.31/109.47	4.5-7 lb. in.	325°
U	RUS	1000	1.0-20K	open	1600	$3.000 / 76.2$	$12.00 / 304.80$	6.38/162.05	$3.5-7 \mathrm{lb}$. in.	335°
C	RCS/RCL	7.5	10.0-5K	enclosed	d 305	0.875/22.23	0.515/ 13.08	-	0.25-3 oz. in.	300°
E	REE	12.5	1.0-15 K	enclosed	d 305	1.219/30.96	1.047/ 26.59	-	1-6 oz. in.	300°

Standard part numbers for rheostats

	7．5W Model C 	12．5W Model E 	25W Model H 	50W Model J	75W Model G	100W Model K	150W Model L	225W Model P	300W Model N	500W Model R	1000W Model U		
0.5 －R50				$\checkmark 10.0$	$\checkmark 12.3$	$\checkmark 14.1$	$\checkmark 17.3$						
1 －1R0		レレレ3．53	$\checkmark \checkmark 5.00$	$\checkmark 7.07$	$\checkmark 8.66$	$\checkmark 10$	$\checkmark 12.3$	$\checkmark 15.0$	$\checkmark 17.32$	$\checkmark 22.3$	$\checkmark 31.6$		
$1.5-1 \mathrm{R} 5$										$\checkmark 18.2$	$\checkmark 25.8$		
$2-2 \mathrm{RO}$		$\boldsymbol{\bullet}$ レ 2.50	レ レ 3.54	$\checkmark 5.00$	$\checkmark 6.12$	$\checkmark 7.07$	$\checkmark 8.65$	$\checkmark 10.6$	$\checkmark 12.24$	$\checkmark 15.8$	$\checkmark 22.4$		
$2.5-2 \mathrm{R} 5$		くレレ2．24								$\checkmark 14.1$	$\checkmark 20.0$		
$3-3 \mathrm{RO}$		レレレ2．04	$\checkmark \checkmark 2.88$		$\checkmark 5.00$	$\checkmark 5.75$	$\checkmark 7.07$	$\checkmark 8.66$	$\checkmark 10.00$	$\checkmark 12.9$	$\checkmark 18.3$		
4 －4R0				$\checkmark 3.53$				$\checkmark 7.50$	$\checkmark 8.66$	$\checkmark 11.2$	$\checkmark 15.8$		
5 －5R0		レレレ1．58			$\checkmark 3.88$	$\checkmark 4.47$	$\checkmark 5.48$	$\checkmark 6.71$	$\boldsymbol{\sim} 7.75$	$\checkmark 10.0$	$\checkmark 14.1$		
6 －6R0		レレレ1．44	\checkmark レ 2.04	$\checkmark 2.88$									
$7.5-785$					$\checkmark 3.16$	$\checkmark 3.65$	$\checkmark 4.47$	$\checkmark 5.49$	$\checkmark 6.32$				
8 －8R0		$\boldsymbol{\bullet}$	$\checkmark \checkmark 1.77$	$\checkmark 2.50$						$\checkmark 7.90$	$\checkmark 11.2$		
$10-10 \mathrm{R}$	\checkmark レ 0.86	レレレ1．12	\checkmark レ 1.58		$\checkmark 2.74$	$\checkmark 3.16$	$\checkmark 3.88$	$\checkmark 4.74$	$\checkmark 5.48$		$\checkmark 10.0$		
$12-12 \mathrm{R}$				$\checkmark 2.04$									
$12.5-12 \mathrm{R} 5$										$\checkmark 6.30$	$\checkmark 8.95$		
$15-15 R$	$\checkmark \vee 0.71$	マレレ0．91	$\checkmark \vee 1.29$				$\checkmark 3.163$	$\checkmark 3.87$	$\checkmark 4.47$				
$16-16 \mathrm{R}$				$\checkmark 1.76$	$\checkmark 2.17$	$\checkmark 2.50$				$\checkmark 5.60$	$\checkmark 7.90$		
$22-22 \mathrm{R}$				$\checkmark 1.50$									
$25-25 R$	$\checkmark \vee 0.55$	レレレ0．71	$\checkmark \vee 1.00$		$\checkmark 1.73$	$\checkmark 2.0$	$\checkmark 2.450$	$\checkmark 3.00$	$\checkmark 3.46$	$\checkmark 4.47$	$\checkmark 6.33$		
$35-35 \mathrm{R}$	\checkmark レ 0.46	$\boldsymbol{\checkmark}$ レ 0.60	\checkmark レ 0.845	$\checkmark 1.19$			$\checkmark 2.070$						
40 －40R										$\checkmark 3.54$			
$50-50 \mathrm{R}$	$\checkmark \checkmark 0.39$	レレレ0．50	\checkmark レ 0.707	$\checkmark 1.00$	$\checkmark 1.23$	$\checkmark 1.41$	$\checkmark 1.735$	$\checkmark 2.12$	$\checkmark 2.45$	$\checkmark 3.16$	$\checkmark 4.47$		
75 －75R	$\checkmark \checkmark 0.32$	マレレ0．40	$\checkmark \checkmark 0.575$		$\checkmark 1.00$	$\checkmark 1.15$	$\checkmark 1.415$	$\checkmark 1.73$	$\checkmark 2.00$		$\checkmark 3.65$		
$80-80 \mathrm{R}$				$\checkmark 0.790$						$\checkmark 2.52$			
$100-100$	\checkmark－ 0.27	$\boldsymbol{\bullet}$ レ 0.36	$\checkmark \checkmark 0.500$		$\checkmark 0.866$	$\checkmark 1.00$	$\checkmark 1.225$	$\checkmark 1.50$	$\checkmark 1.73$		$\checkmark 3.16$		
$125-125$		マレレ0．32	$\checkmark \checkmark 0.445$	$\checkmark 0.630$						$\checkmark 2.00$			
$150-150$	$\checkmark \vee 0.22$	レレレ0．29		$\checkmark 0.575$			$\checkmark 1.000$	$\checkmark 1.22$	$\checkmark 1.41$				
$160-160$													
$175-175$		マレレ0．27	$\boldsymbol{\wedge}$							$\checkmark 1.69$	$\checkmark 2.39$		
$200-200$	$\checkmark \vee 0.19$	レレレ0．25			$\checkmark 0.612$	$\checkmark 0.707$	$\checkmark 0.865$	$\checkmark 1.06$	$\checkmark 1.22$				
$225-225$				$\checkmark 0.470$							$\checkmark 2.11$		
$250-250$	$\checkmark \vee 0.17$	レ レ ひ 0.22	$\checkmark \checkmark 0.316$				$\checkmark 0.775$			$\checkmark 1.41$			
$300-300$				$\checkmark 0.408$	$\checkmark 0.500$	$\checkmark 0.575$		$\checkmark 0.866$	$\checkmark 1.00$		$\checkmark 1.83$		
$325-325$										$\checkmark 1.24$			
$350-350$	$\checkmark \vee 0.15$	レ く 0.19	$\checkmark \checkmark 0.267$				$\checkmark 0.655$						
$400-400$					$\checkmark 0.433$	$\checkmark 0.500$		$\checkmark 0.750$	$\checkmark 0.866$		$\checkmark 1.48$		
$500-500$	$\checkmark \vee 0.12$	レ 」 0.16	$\boldsymbol{\wedge}$	$\checkmark 0.316$	$\checkmark 0.388$	$\checkmark 0.447$	$\checkmark 0.548$			$\checkmark 1.00$	$\checkmark 1.41$		
$600-600$													
$700-700$								$\checkmark 0.567$	$\checkmark 0.655$				
$750-750$	$\checkmark \checkmark 0.10$	$\boldsymbol{\checkmark}$ レ 0.13	$\checkmark \checkmark 0.182$		$\checkmark 0.316$	$\checkmark 0.365$	$\checkmark 0.447$			$\checkmark 0.817$	$\checkmark 1.15$		
800 －800				$\checkmark 0.250$									
$900-900$								$\checkmark 0.500$	$\checkmark 0.578$				
1000 －1K0	$\boldsymbol{\vee}$ レ 0.086	レレレ0．10	$\checkmark \checkmark 0.155$	$\checkmark 0.224$	$\checkmark 0.274$	$\checkmark 0.316$				$\checkmark 0.707$	$\checkmark 1.00$		
1200 －1K2								$\checkmark 0.433$	$\checkmark 0.500$				
$1250-1 \mathrm{~K} 25$							$\checkmark 0.346$						
$1500-1 \mathrm{~K} 5$	$\checkmark \vee 0.071$	$\checkmark \boldsymbol{\rightharpoonup} 0.090$	$\checkmark \times 0.129$		$\checkmark 0.224$	$\checkmark 0.258$		$\checkmark 0.387$	$\checkmark 0.447$	$\checkmark 0.577$	$\checkmark 0.816$		
1600 －1K6				$\checkmark 0.176$									
$1750-1 \mathrm{~K} 75$								$\checkmark 0.358$	$\checkmark 0.414$				
1800 －1K8							$\checkmark 0.288$						
2000 －2к0					$\checkmark 0.194$	$\checkmark 0.224$		$\checkmark 0.336$	$\checkmark 0.387$	$\checkmark 0.500$			
2250 －2K25							$\checkmark 0.259$						
$2500-2 \mathrm{~K} 5$	$\boldsymbol{\sim}$	マレレ0．070	$\checkmark \checkmark 0.100$	$\checkmark 0.141$	$\checkmark 0.173$	$\checkmark 0.200$	$\begin{array}{ll} \boldsymbol{v} & 0.224 \\ \boldsymbol{v} & 0.182 \end{array}$	$\checkmark 0.300$	$\checkmark 0.346$	$\checkmark 0.447$	$\checkmark 0.633$		
3000 －3K0													
$3500-3 \mathrm{~K} 5$	\checkmark レ 0.046	$\boldsymbol{\checkmark}$ レ 0.060	$\checkmark \checkmark 0.084$	$\checkmark 0.119$				$\boldsymbol{\checkmark}=$ Standard values；check availability Rheostats are silicone－ceramic coated at and					
4500 －4K5													
5000 －5K0	$\checkmark \vee 0.039$	$\checkmark \vee \downarrow 0.050$	$\checkmark \vee 0.070$	$\checkmark 0.100$	$\checkmark 0.123$	$\checkmark 0.141$							
$7500-7 \mathrm{~K} 5$		レ く ひ 0.041	$\boldsymbol{\checkmark}$		$\checkmark 0.100$	$\checkmark 0.115$	$\checkmark 0.141$	Rheostats above the	are silicon	ceramic mic values：	ted at and		
8000 10000		レレレ0．035	$\checkmark \vee 0.050$	$\begin{array}{ll} \checkmark & 0.079 \\ \boldsymbol{v} & 0.070 \end{array}$	$\checkmark 0.087$	$\checkmark 0.100$	$\checkmark 0.122$	Model C：		Model G：	000		
$12500-12 \mathrm{~K} 5$		マレレ0．031						Model E：	3500 Ω	Model K：	500		
15000 － 15 K		レレレ0．029	$\checkmark \vee 0.041$	$\checkmark 0.058$				Model H：	7500Ω	Model L：	00 Ω		
20000 －20K			$\checkmark \checkmark 0.035$	$\checkmark 0.050$				Model J：	5，000				
$25000-25 \mathrm{~K}$			$\boldsymbol{\checkmark}$	$\checkmark \quad 0.045$									
$30000-30 \mathrm{~K}$				$\checkmark \quad 0.041$					www oh				
40000 － 40 K				$\checkmark 0.035$					WWW．Oh				
50000 － 50 K				$\checkmark 0.032$									

Ohmite molded composition potentiometers are available in various models for applications in military devices, industrial equipment and in equipment requiring a convenient resistance control device.

FEATURES

- Low noise, smooth operation
- In accordance with "Mil" RV4N, RV4L, RV6L, RV6N, 2RV7N types
- RoHS compliant; non-RoHS version unavailable.

SPECIFICATIONS

Electrical

Derating: linear from 100\% at $+70^{\circ} \mathrm{C}$ to 0% at $+120^{\circ} \mathrm{C}$
Operating temp. range: $-55^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$

Material

Construction: Elements molded into a single, integral structure. Metal cover protects and shields the internal parts.
Sealing: synthetic resin containing non-mercurial fungicide

Since all rheostats/potentiometers are electro-mechanical devices, they are subject to mechanical wear and, therefore, have a finite life.

Potentiometers

Molded composition

Standard part numbers for Potentiometers

Power Tap Switches
 High-current, Non-shorting Type

Model 711

ceramic style

Model	Rating (AC)	Rating (DC)*	Max. no. of taps	Overall Diameter (max., in./mm)	$\begin{gathered} \text { Dept } \\ \text { single } \end{gathered}$	behind panel 2 in tandem	/mm) 3 in tandem	Shaft Torque
711	7A 125V	7A 20 V	11	1.56 / 39.6	13/16 / 20.6	125/32 / 45.2	$22^{15 / 32} / 62.7$	7-12 oz.-in.
111	15A 125V	15A 20V	11	2.19 / 56	11/8/28.7	23/4 / 69.9	-	1.5-3.8 in.-lbs.
212	20A 150V	20A 20V	12	2.25 / 57	13/4/ 44.5	43/16/106.4	63/16 / 157.2	3-7 in.-lbs.
312	30A 300V	30A 20V	12	3.31 / 84	21/4/57.2	$45 / 8 / 117.5$	7 / 177.8	3-7 in.-lbs.
412	50 A 300 V	50A 20V	12	4.25 / 108	27/16/61.9	$5^{1 ⁄ 3} 32 / 127.8$	75/8/193.7	3-8 in.-lbs.
608	100A 300V	100A 20V	8	6.25 / 159	35/16 / 84.1	$6^{13 / 16} / 173.0$	105/16 / 261.9	25-35 in.-lbs.
*non-inductive load								

Ohmite power Tap Switches (high power rotary switches) are constructed to provide dependable, convenient operation.

All Ohmite tap switches, from 15 to 100 amps , have ceramic arc-proof bodies and metal alloy contacts. Their all-soldered and all-riveted construction assures mechanical and operational integrity. Even the smallest Ohmite Tap

Switch, rated at 7 amps, has a reinforced non-metal body and solid metal alloy contacts. These units feature high current handling capability in a small package.

F EATURES

- "Slow-breaking, Quick-make" action proved best for switching AC current.
- Non-shorting type disconnects previous circuit before establishing contact for succeeding tap.
- Ceramic and metal construction provides resistance to arcing, burning and charring.
- Tandem assemblies available as standard models.
- UL listed for models 111, 212, 312 and 412
- RoHS compliant product available Jan. 2006 Add "E" suffix to part number to specify.

Material

Body: Ceramic, arc-proof (models 212, 312, 412, 608). Compression Molded Polyester (model 111). Melamine Phenolic (model 711)
Contacts: Silver alloy. Common contact is rounded for assured seating. Self-cleaning with built in wiping action.
Terminals: Soldering. 711 also accepts quick connectors; 412, \#10 screws; 608, 0.25 " bolts.

Mounting

Model 711: Using $3 / 8-32$ bushing for $1 / 8$ " thick maximum panel. Four non-turn lug positions are possible on the single, unenclosed switch. Recesses in body of switch permit positioning of non-turn washer at "12, 3, 6 and 9 o'clock." $3 / 16$ " hole for non-turn washer. Shaft $1 / 4$ "
Model 111: For $1 / 4^{\prime \prime}$ panel, maximum, using $3 / 8-32$ bushing and hex nut. $A^{3} / 16^{\prime \prime}$ hole is required for the non-turn washer. Shaft $1 / 4$ "
Model 212: Using $3 / 8-32$ threaded bushing and hex nut. A $5 / 32^{\prime \prime}$ hole is required for the non-turn pin. Shaft $1 / 4^{\prime \prime}$
Model 312: For $1 / 4^{\prime \prime}$ panel, maximum, use three 10-32 flat-head machine screws ${ }^{3 / 8 "}$ long. Shaft $1 / 4$ "
Model 412: For $1 / 4$ " panel, maximum, use three 10-32 flat-head machine screws $3 / 8^{\prime \prime}$ long. A $5 / 16^{\prime \prime}$ hole in panel is required for shaft.
Model 608: For 1" panel, maximum, three flat-head machining screws $1 / 4-20,1^{1 / 4} 4^{\prime \prime}$ long. Drill $a^{7 / 16 " ~ h o l e ~ i n ~ p a n e l ~ f o r ~ s h a f t . ~}$ Shaft $3 / 8$ "
NOTE: Since all tap switches are electro-mechanical devices, they are subject to wear and, therefore, have a finite life.

Standard Part Numbers for Power tap switches

Model 111

Model 212

Model 412

Model 608

Rheostat and

Tap Switch Hardware

Knobs, Dials, Mounting Fasteners

RHEOSTAT TANDEM COUPLING KITS

Ohmite coupling kits permit tandem mounting of two rheostat units. A coupling fastens to the shaft of the back unit; projections on the coupling engage the recesses in the driving hub of the front unit.

Each kit consists of a steel "U" frame, a coupling with set screw, mica washer, allen wrench and instructions.

Part No.	Front mount models	Rear mount models	Max. panel thickness
$\boldsymbol{\checkmark} 6532$	H, J	H, J, G, K, L	$5 / 32 "$
$\boldsymbol{\checkmark} 6533$	G, K, L	H, J, G, K, L	$1 / 8^{\prime \prime}$
$\div 6591$	E	E	$1 / 16$ "

RHEOSTAT REPAIR KITS

Electrical contact replacement kit. Kit includes contact/slip ring assemblies (for round and ribbon wire rheostats), copper graphite washer, spring arm and hub. Instructions included.

Part No.	Rheostat model
$\boldsymbol{\iota} 7070$	P
$\boldsymbol{\iota} 7071$	N
$\boldsymbol{\iota} 7072$	R
$\boldsymbol{\nu} 7074$	U

EXTRA MOUNTING HARDWARE

Kit contains 25 each, nuts and lock washers for panel mounting units.

Part No.	For model
$\boldsymbol{\checkmark} 7090$	E
$\boldsymbol{\iota} 7091$	H, J, G, K, L, 111, 212, 711
$\boldsymbol{\nu}$ = Standard values	
$\mathbf{*}=$ Non-standard values subject to minimum handling charge per item	

K N O B S

Any knob can be used with any rheostat and tap switch model which has the corresponding shaft diameter. Knobs are fastened to shafts with slotted set screws.

Slotted set screw	Hex socket set socket	Description	Knob dia.	Hole. dia.	Fits model
$* 5102$	-	Bar knob, 21/4" long	-	$1 / 4^{\prime \prime}$	H, J, G, K, L

DIALS
Handsomely finished, black-enameled, aluminum dials for Ohmite rheostats and tap switches. Figures and lines are etched on a black background for contrast and ease of readability. On rheostat dials, divisions indicating approximate percentage of rheostat resistance in circuit are marked from 0 to 100. On tap switch dials, Number of dial positions are identical with number of switch positions.

Ohmitrol Power and Motor Speed Controls are solid state units which provide an infinitely smooth power control over their entire voltage range. An integral internal trimmer on some models allows customization of the control to a specific application by a simple turn of a screwdriver.

Power and motor speed controls are extremely versatile from an AC source; either AC or DC outputs are possible with the appropriate model. Model PCA, AC output, has applications to control heaters (both resistive and infrared) and motors such as universal and shaded pole, and can replace transformers. Model PCD, DC output, can be used to control shunt and series wound, universal, compound and permanent magnet motors, magnetic clutches, brakes, etc.

F E A T URES

- AC and DC output types
- Component styles
- On-Off switch built in
- Internal trimmer on PCA and PCD models
- Adjustable control range

SPECIFICATIONS

Output: PCA models have an AC output. PCD models have two DC outputs: one output from an AC source is rectified DC at approximately full line voltage, the other output is variable or controlled DC. (DC models have terminals at the rear of the unit which accept quick connectors.)
Adjustable control range: On PCA and PCD models an internal trimmer allows the starting point of the control voltage to be set anywhere within the stated trimmer voltage range with a screwdriver.
Armature current: For PCD models, 500 mA min. for proper operation.
Knobs/Dials: All power controls on this page accept part number 5000 dial and any knob with a quarter-inch hole (part numbers 5102, 5103, 5103A, 5106, 5106A, 5107, 5109, 5109A, 5110, 5110A, 5111, 5111A, 5112, 5112A, 5116, 5116A, 5150, 5150A and 5152A)

NOTE: For panel mount use under full power output conditions, the face of the control must be in contact with a metal panel. For optimum heat dissipation, a ther-mal-conducting compound must be applied to the face of the power control prior to mounting.

Model	Load (watts)	$\begin{gathered} \text { Input } \\ \text { (volts) } \end{gathered}$	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Output range (VAC, nom.)	Trimmer range (volts)
Component style (Ohmitrol) 2.03 " $\times 1.77$ " $\times 1.75$ " ($51.6 \times 45.0 \times 44.5 \mathrm{~mm}$)					
\checkmark PCA1000	1000W 8.3A AC	120 VAC	60HZ	0-120VAC	10-50V
\checkmark PCA1050	15A AC	120 VAC	60HZ	0-120VAC	10-75V
* PCA1100	1000W 8.3A AC	120 VAC	50HZ	0-120VAC	10-50V
\checkmark PCA1020	2000W 8.3A AC	240 VAC	60HZ	0-240VAC	20-100V
* PCA1120	2000W 8.3A AC	240VAC	50HZ	0-240VAC	20-100V
2.03 " 2.77 " $\times 1.75$ " ($51.6 \times 70.4 \times 44.5 \mathrm{~mm}$)					
\checkmark PCD1000	3.5A DC to 6.0A DC	120VAC	60HZ	0-120VDC	10-50V
* PCD1100	3.5A DC to 6.0A DC	120 VAC	50HZ	0-120VDC	10-50V
* PCD1020	3.5A DC to 6.0A DC	240 VAC	60HZ	0-240VDC	20-100V
* PCD1120	3.5A DC to 6.0A DC	240VAC	50HZ	0-240VDC	20-100V
$\boldsymbol{\nu}=$ Standard values $\boldsymbol{*}=$ Non-standard values subject to minimum handling charge per item					
Check product availability at www.ohmite.com					

Dec-Ranger ${ }^{T M}$
 Decade Resistance Selector

A precision, $\pm 0.1 \%$ accuracy, decade resistance box. The unit has a sturdy metal housing, universal binding posts and a grounded metal post for effective shielding.

F E A T URES

- Rotary tap switches operate in either direction.
- Direct digital readout.

SPECIFICATIONS
Power: $1 / 4$ watt per resistor.
Accuracy: $\pm 0.1 \%$ (plus 0.03 ohms maximum contact and circuit resistance)
TC of resistors: $\pm 20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Number of decades: 6
Range: 1 ohm thru 1,111,110 ohms in 1 ohm increments
Switch life: in excess of 50,000 operations
Dimensions: $10^{1} / 2^{\prime \prime}$ wide, $3^{3} / 4^{\prime \prime}$ high, $4^{5} / 8^{\prime \prime}$ deep
Weight: 3 lbs .10 oz.

Ohm-Ranger

Resistance Selector

Model No. 3420

Cap-Ranger

 Capacitance Selector

Model No. 3430

Application Notes

Series	Part Number Prefix	Weight Each (Grams)
10 Series	12	0.490
	13	0.976
	15	3.188
20 Series	20	7.540
	21	0.560
	22	0.620
	23	0.960
	25	2.250
	27	7.090
Ohmicone (40 Series)	40	8.770
	41	0.440
	42	0.670
	43	0.862
	45	3.250
	47	6.610
90 Series	90	8.000
	91	0.600
	92	0.750
	93	1.000
	95	2.500
Power Tap Switch	312	350.923
A	AW	5.1
	AX	8.7
	AY	18.4
	AZ	36.9
Axiohm	5C	0.210
Metal Plate Current Sense	602SJR	0.257
	605SJR	0.116
	610SJR	0.390
80 Series	83F (RW79U)) 0.875
Metal-Mite (89 Series)	850 (RE75G)	27.500
Brown Devil (200 Series)	B8	0.390
Dividohm	D12	0.480
(210 Series)	D50	2.320

	Part Number Prefix	Weight Each (Grams)
Series	L175	14.690
	L225	16.360
	L250	1.420
Low Value	LVC06	0.300
Thick Film	LVC20	0.010
	LVC25	0.024
Macro Chip	MC102	0.039
Mini Macro	MMC06	0.002
Chip	MMC08	0.005
	MMC12	0.009
	MMC25	0.040
Micro-Mox	MOX-037	0.491
	E24	0.491
	MOX-037	$0.44 /$ E26

Series	Part Number Prefix	Weight Each (Grams)
Surface Mount Power	RC0R5DB	1.140
	RC0S2CA	0.330
	RC0S2CA	0.330
	RF0S8BA	0.140
	RF1S0CA	0.330
	RP1R5CB	0.620
	RP1S3CA	0.330
	RP1S5CB	0.620
	RP2R0DA	0.740
	RP2S0DA	0.740
	RW1S0BA	0.240
Four Terminal Current Sense	RW1S0CK	0.291
Surface Mount Power	RW1S5CA	0.560
	RW2R0CB	0.620
	RW2R0DA	0.740
	RW2S0CB	0.620
	RW2S0DA	0.740
	RW3R0DB	1.140
	RW3R5EA	1.750
Slim-Mox	SLIM-MOX10	0.890
	SLIM-MOX 10	1011.070
	SLIM-MOX	020.670
	SLIM-MOX	021.160
	SLIM-MOX	1.260
	SLIM-MOX10	11.360
	SLIM-MOX10	1061.550
	SLIM-MOX	081.740
	SLIM-MOX20	021.360
	SLIM-MOX20	041.740
	SLIM-MOX	2.120
	SLIM-MOX2	2.510
	SLIM-MOX2	102.890
	SLIM-MOX	1.840
	SLIM-MOX3	3.280
	SLIM-MOX3	3.850
	SLIM-MOX	2.510
	SLIM-MOX	3.280
	SLIM-MOX	退 4.040
	SLIM-MOX	104.810
Super Mox	MOX910	0.425
	MOX920	0.567
	MOX930	0.709
	MOX940	5.670

Series	Part Number Prefix	Weight Each (Grams)
TA Series	TA025	1.470
	TA050	13.200
	TA100	25.480
TAP1000	TA1K	471.000
TA Series	TA203	0.980
	TA205	1.470
	TA207	2.090
	TA303	0.980
	TA305	1.470
	TA307	2.090
	TA310	2.570
	TA605	1.470
	TA805	1.470
TAP600	TAP600	120.000
TO220	TDH35	1.380
Surface Mount		
TDH35	TDH35	1.380
TFS	TFSA	0.800
	TFSB	0.700
	TFSC	0.450
	TFSD	0.250
	TFSE	0.200
	TFSF	0.150
TGH	TGHG	1.418
	TGHH	1.418
	TGHL	1.418
WFH	WFH160	105.000
	WFH220	158.000
	WFH330	210.000
	WFH90	53.000
WL Series	WLC	0.726
Rheostats	H	86
	J	145
	G	236
	K	290
	L	499
	P	907
	N	1,179
	R	1,814
	U	4,536

To see the latest in resistor technology click on the "What's New" tab at ohmite.com

Application Notes

Resistor Selection

RESISTOR FACTS AND FACTORS

A resistor is a device connected into an electrical circuit to introduce a specified resistance. The resistance is measured in ohms. As stated by Ohm's Law, the current through the resistor will be directly proportional to the voltage across it and inversely proportional to the resistance.

The passage of current through the resistance produces heat. The heat produces a rise in temperature of the resistor above the ambient temperature. The physical ability of the resistor to
withstand, without deterioration, the temperature attained, limits the operating temperature which can be permitted. Resistors are rated to dissipate a given wattage without exceeding a specified standard "hot spot" temperature and the physical size is made large enough to accomplish this.

Deviations from the standard conditions ("Free Air Watt Rating") affect the temperature rise and therefore affect the wattage at which the resistor may be used in a specific application.

SELECTION REQUIRES 3 STEPS

Simple short-cut graphs and charts in this catalog permit rapid determination of electrical parameters. Calculation of each parameter is also explained. To select a resistor for a specific application, the following steps are recommended:

1. (a) Determine the Resistance.
(b) Determine the Watts to be dissipated by the Resistor.

2 . Determine the proper "Watt Size" (physical size) as controlled by watts, volts, permissible temperatures, mounting conditions and circuit conditions.
3. Choose the most suitable kind of unit, including type, terminals and mounting.

STEP 1 DETERMINE RESISTANCE AND WATTS

Ohm's Law

(a) $\quad \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$ or $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}$ or $\mathrm{V}=\mathrm{IR}$

Ohm's Law, shown in formula form above, enables determination of the resistance when the required voltage and current are known. When the current and voltage are unknown, or the best values not decided on, at least two of the three terms in Ohm's Law must be measured in a trial circuit.
(b)

$$
P=I^{2} R \text { or } P=V I \text { or } P=\frac{V^{2}}{R}
$$

Power in watts, can be determined from the formulas above, which stem from Ohm's Law. R is measured in ohms, V in volts, I in amperes and P in watts.

Why Watts Must Be Accurately Known

Stated non-technically, any change in current or voltage produces a much larger change in the wattage (heat to be dissipated by the resistor). Therefore, the effect of apparently small increases in current or voltage must be investigated because the increase in wattage may be large enough to be significant. Mathematically, the wattage varies as the square of the current, or voltage, as stated in the formulas (b). For example, an increase of 20% in current or voltage will increase the wattage 44%. Figure 1 below graphically illustrates the square law relation. Hence, the actual current must be used in figuring the wattage and the increase in wattage due to apparently small changes, then determined in order to select the proper size resistor. Allowance should be made for maximum possible line voltage.

Fig. 1: Rapid increase of wattage with current or voltage.

STEP 2 POWER RATING OR PHYSICAL SIZE OF RESISTOR

A resistor operated at a constant wattage will attain a steady temperature which is determined largely by the ratio between the size (surface area) and the wattage dissipated, The temperature stabilizes when the sum of the heat loss rates (by radiation, convection and conduction) equals the heat input rate (proportional to wattage). The greater the resistor area per watt to be dissipated, the greater the heat loss rate and therefore the lower the temperature rise. The relation between the losses varies for different resistors.

Free Air Watt Rating

The wattage rating of resistors, as established under specified standard conditions, is defined as the "Free Air Rating" ("Full Rating" or "Maximum Power Rating"). Several standard methods of rating are in use based on different service conditions. The method of both the "National Electrical Manufacturers Association" (NEMA) and the "Underwriters' Laboratories, Inc." (UL) can be described as follows:

The relation of the "Free Air Watt Rating" of tubular type, vitreous enameled resistors to the physical size, is to be set at such a figure that when operated at their rated watts, the temperature rise of the hottest spot shall not exceed $300^{\circ} \mathrm{C}\left(540^{\circ} \mathrm{F}\right)$ as measured by a thermocouple when the temperature of the surrounding air does not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. The temperature is to be measured at the hottest point of a two-terminal resistor suspended in free still air space with at least one foot of clearance to the nearest object, and with unrestricted circulation of air.

A slightly different definition of temperature limit used as a basis for wattage rating, and which results in a slightly higher attained temperature, was originally established in military specification MIL-R-26 for wirewound resistors.

Characteristic V resistors are required to dissipate rated wattage in an ambient of $25^{\circ} \mathrm{C}$ without exceeding a maximum operating temperature of $350^{\circ} \mathrm{C}$ at the hottest spot. This corresponds to a temperature rise of $325^{\circ} \mathrm{C}$ in a $25^{\circ} \mathrm{C}$ ambient. Although MIL-R-26 permits a $25^{\circ} \mathrm{C}$ greater temperature rise than NEMA or UL, the reference ambient for the latter two is $15^{\circ} \mathrm{C}$ higher. Consequently, the difference in attained temperature between the two systems is only $10^{\circ} \mathrm{C}$. The curves in Fig. 2 show the relation between temperature rise and wattage for various specifications. Note the differences in the permissible rise for each specification.

Fig. 2: Approximate hot spot temperature rise of a resistor in free air for various specifications.

The absolute temperature rise for a specific resistor is roughly related to the area of its radiating surface. It is also dependent upon a number of other factors, however, such as thermal conductivity of the core and coating materials, emissivity factor of the outer surfaces, ratio of length to diameter, heat-sink effect of mountings, and other minor factors.

The maximum permissible operating temperature for a given resistor is basically determined by the temperature limitations imposed by
the materials used in its construction. Generally speaking, these limits cannot be sharply defined in terms of temperature alone. Other factors such as resistance stability versus time, deterioration rates of insulation and moisture-resistance characteristics, type and size of resistance wire, all enter into consideration of "acceptable service life."

For these reasons, the precise temperature limits corresponding to 100% rated wattage are somewhat arbitrary and serve primarily as design targets. In the last analysis, once a wattage rating has been assigned on the basis of an empirical hot spot limit, the verification of its correctness must be established through long term load-life tests based on performance and stability standards rather than the measurement of hot spot temperature. Maximum limits are stipulated for parameter changes as a result of various tests, including a 2000 hour load-life test.

It is also assumed that the temperature rise at a given wattage is independent of the ambient temperature in which this wattage is being dissipated. Therefore, for high ambient temperatures, the operating wattage should be limited in accordance with the curves of Fig. 3. Although the assumption that temperature rise is independent of ambient is not exactly true, the approximation is sufficiently close for all practical purposes and, therefore, has been adopted for derating purposes.

Fig. 3: Derating for ambient temperature.
Despite the above variables, figures may be cited in terms of "watts dissipated per square inch of winding surface" for a given temperature rise. For power type resistors operating at $300^{\circ} \mathrm{C}$ rise above ambient, this figure varies between approximately 6.3 watts per square inch for large resistors (175 watt) to about 9 watts per square inch for smaller resistors (12 watt). It should also be observed from Fig. 2 that temperature rise is not directly proportional to wattage dissipated. Note, for example, that at 50% rated wattage, the temperature rise still remains about 70% of that at full rating.
The wattage ratings used in this catalog, unless otherwise stated for certain types, are on the basis of a nominal operating temperature of $350^{\circ} \mathrm{C}$ at full rating. There are two general categories of power resistors for which the $350^{\circ} \mathrm{C}$ nominal temperature limit does not apply. One is that class of power-precision resistors where high stability is a salient feature, in which case the operating temperature is nominally limited to $275^{\circ} \mathrm{C}$. The other category includes all exposed ribbon wire resistors (see description of Corrib ${ }^{\circledR}$ and Powr-Rib ${ }^{\circledR}$) which are rated for $375^{\circ} \mathrm{C}$ ($675^{\circ} \mathrm{F}$) maximum temperature rise when measured on the wire per NEMA standards.

Temperature Distribution on a Resistor

The temperature rise varies (following a curve) along the length of the resistor with the hot spot at the center-top (of a horizontal tube) and the ends at approximately 60% of the maximum temperature rise. The terminals themselves are still cooler. When the resistor is vertical, the hot spot shifts upwards a little and the top end is hotter than the bottom. The standard "Free Air Watt Rating," however, is used regardless of position.

Resistor Selection

STEPS 3 SELECT A RESISTOR

Choose the most suitable resistor meeting the requirements of the application. Standard resistors carried in stock should be considered first. If a suitable resistor cannot be found in the standard sizes or resistance values, then select a non-standard resistor from the range on available sizes (consult factory).

APPLICATION WATT RATING

To allow for the differences between the actual service conditions and the "Free Air Watt Rating" it is a general engineering practice to operate resistors at more or less than the nominal rating. The details by which such ratings can be estimated are given in the following pages. Most thermal calculations, however, involve so many factors which are usually not accurately known, that at best they are only approximations.

The most accurate method of determining or checking the rating is to measure the temperature rise in a trial installation. A thermocouple (made of \#30 B \& S gage wire) is recommended for the measuring element. Even measurements made with a thermocouple will vary slightly with different samples and techniques. The factors which affect the temperature rise act independently of each other and are summarized as follows:

1. Ambient Temperature

As the maximum permissible operating temperature is a set amount, any increase in the ambient temperature subtracts from the permissible temperature rise and therefore reduces the permissible watt load.

2. Enclosure

Enclosure limits the removal of heat by convection currents in the air and by radiation. The walls of the enclosure also introduce a thermal barrier between the air contacting the resistor and the outside cooling air. Hence, size, shape, orientation, amount of ventilating openings, wall thickness, material and finish all affect the temperature rise of the enclosed resistor.

3. Grouping

When resistors are close to each other they will show an increased hot spot temperature rise for a given wattage because of the heat received by radiation from each other and the increased heat per unit volume of air available for convection cooling.

4. Altitude

The amount of heat which air will absorb varies with the density, and therefore with the altitude above sea level. At altitudes above 100,000 feet, the air is so rare that the resistor loses heat practically only by radiation.

5. Pulse Operation

This is not an environmental condition but a circuit condition. As a pulse of power, when averaged over the total on and off time, results in less heat per unit time than for continuous duty, the temperature rise is affected. This may permit higher power during the pulses. The conditions must be expertly considered for conservative rating. The open-wound "Powr-Rib ${ }^{\circledR}$ " resistor construction is most suitable.

6. Cooling Air

Forced circulation of air over a resistor removes more heat per unit time than natural convection does and therefore permits an increased watt dissipation. Liquid cooling and special conduction mountings also can increase the rating.

7. Limited Temperature Rise

It is sometimes desirable to operate a resistor at a fraction of the Free Air Watt Rating in order to keep the temperature rise low. This may be to protect adjacent heat sensitive apparatus, to hold the resistance value very precisely both with changing load and over long periods of time and to insure maximum life.

8. Other Considerations

High Resistance. High resistance units, which require the use of very small diameter wire, generally should operate at reduced temperature for maximum reliability.

High Voltage

A maximum voltage gradient of 500 volts R.M.S. (705 volts peak) per inch of winding length is recommended under normal conditions. For higher gradients in pulse applications or for other special conditions such as oil immersion, consult factory.

High Frequency

Non-inductively wound resistors are generally required for use at high frequencies.

Military and Other Specifications

The special physical operating and test requirements of the applicable industrial or military specification must be considered. Military specification resistors should be ordered by their MIL numbers.

Our friendly Customer Service team can be reached at $\mathbf{8 6 6 - 9 - 0 H M I T E}$

All the components of an electrical apparatus - resistors, rheostats, capacitors, transformers, chokes, wiring, terminal boards, rectifiers, transistors, electronic tubes, etc.-have their own limitations as to the maximum temperature at which they can reliably operate. The attained temperature in service is the sum of the ambient temperature plus the temperature rise due to the heat dissipated in the apparatus.

The temperature rise of a component is affected by a number of factors. The graphs and discussions which follow, amplify and supplement the factors on the previous page.

Note that the Multiplying Factors given on the Short Cut Chart, on page 96 are the reciprocals of the "Percent Load Ratings" shown on the graphs in this section. The percent figures are, of course, expressed as decimals before finding the reciprocals.

Ambient Temperature Derating

Fig. 4 shows the percent of full load which power resistors can dissipate for various high ambient temperatures.

Fig. 4: Derating of Resistors for High Ambient Temperatures.

Derating Due to Enclosure

The amount of derating required, if any, because of enclosure is affected by a number of factors, most of which are hard to determine accurately. The watts per square inch of surface, size, shape, orientation, wall thickness, material, finish and amount and location of ventilating openings all play a part. Fig. 5 serves to indicate for a particular set of conditions how the temperatures varied with the size of enclosure for a moderate size power resistor.

Derating Due to Grouping

The temperature rise of a component is affected by the nearby presence of other heat-producing units, such as resistors, electronic tubes, etc. The curves in Fig. 6 show the power rating for groups of resistors with various spacings between the closest points of the resistors, assuming operation at maximum permissible hot spot temperature. If resistors are to be operated at lower hot spot temperatures, the amount of derating for grouping can be reduced.

Derating for Altitude

The curve in Fig. 7 shows the proportional watts for various altitudes, assuming standard atmospheric conditions.

Fig.5: Example of Effect of Size of Enclosure on Temperature Rise of An Enclosed Resistor.

Fig.6: Derating of Resistors to Allow for Grouping

Fig. 7: Derating for Altitude

Application Notes

Resistor Selection

Pulse Operation

Unlike the environmental factors, which result in reduction of the watt rating, pulse operation may permit higher power in the pulses than the continuous duty rating.

The NEMA has set up certain standard duty cycles for motor control resistors and the resistor ratings for some of these conditions are shown in Fig. 8.
The curves in Figures 10,11,12 and 13 illustrate the more general case of various combinations of on and off time for specified loads up to 1000% for a continuous series of pulses. Intermediate loads can be approximated by interpolation. The "on-time" at which each curve flattens out also indicates the maximum on-time for single pulses (with enough off-time for cooling to ambient). Additional data on single pulses is given by Fig. 9. Resistors will reach about 75% of the rated maximum temperature rise in approximately 5 to 8 pulses and level off at maximum rise in another 10 to 20 cycles, depending on percent load, size, type, etc. Any curve passing above the intersection of the designated on and off-times indicates a percent load which can be used. A resistor operated at the rating of an interpolated curve through the point of intersection would operate at maximum rated temperature rise.

The exact temperature rise, of course, varies with each resistor, depending on size, ohms winding, etc. The curves shown indicate the approximate rise for typical units only, as a band or range of values actually exists for each percent load.

Ratings at over 1000% are not recommended except for Powr-Rib ${ }^{\circledR}$ resistors. Curves for intermediate size resistors can be roughly estimated by comparison with the sizes given.

Ratings for single pulses in the milli-second range (and up to 1 to 2 seconds) require individual calculation. This is because the ratings vary greatly with the resistance, or more specifically with the actual weight and specific heat of the resistance alloy used. Calculation is based on the assumption that all of the heat generated in the pulse goes to raise the temperature of the resistance wire.

Fig. 8: Percent of Continuous Duty Rating for Resistors for Typical NEMA Duty Cycles.

Fig. 9: Time Required for Typical Resistors to Reach Rated Operating Temperatures at Various Watt Loads.

Fig. 10: 10 Percent of Continuous Duty Rating for Pulse Operation of small to Medium Size Vitreous Enameled Resistors.

Fig. 11: Percent of Continuous Duty Rating for Pulse Operation of Large Vitreous Enameled Resistors.

Cooling Air

Resistors can be operated at higher than rated wattage when cooled by forced circulation of air. A typical curve is illustrated in Fig 14. The curve tends to level off at higher velocities as excessive hot spots develop where the air flow does not reach all parts uniformly.

Limited Temperature Rise

When it is desired to operate a resistor at less than maximum temperature rise, the percent watts for a given rise can be read from "Temperature Rise vs. Resistor Load" Fig 2 graph on page 91.

Fig.12: Percent of Continuous Duty Rating for Pulse Operation of CORRIB ${ }^{\circledR}$, Corrugated Ribbon Resistors.

Fig. 13: Percent of Continuous Duty Rating for Pulse Operation of Powr-Rib ${ }^{\circledR}$, Bare Resistors

Fig. 14: Percent of Free Air Rating for Typical Resistor Cooled by Forced Air Circulation.

Application Notes

Resistor Selection

SHORT-CUT CHART METHOD TO FIND REQUIRED SIZE (as affected by application conditions)

1. For each Condition, locate the relevant value on the scales below and
record the corresponding Factor (F_{1} to F_{7}). Note: The Standard Free
Air Condition Factor is always 1.
2. Multiply the Factors together.
3. Multiply the Watts by the product obtained from 2 above.

EXAMPLE

Four resistors, each dissipating 115 watts, are to be mounted in a group. Spacing is to be 2" surface to surface. Ambient to be $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$. Enclosure to be total. Other factors standard. Determine Watt Size required.

Operation (1) On Ambient Temperature scale locate $50^{\circ} \mathrm{C}$. Note and record $F_{1}=1.1$ as shown. Locate and record the other factors.
$\left.\begin{array}{lcccccccccc}\text { F1 }_{1} & \text { F2 } & \text { F3 } & \text { F4 } & & \text { F5 } & \text { F6 } & \text { F7 } \\ 50^{\circ} & & 100 \% & 4 @ 2^{\prime \prime} & & & & \text { Standard Conditions }\end{array}\right]$

Operation (2) Multiply the factors together $=2.64$
Operation (3) 115 Watts x $2.64=304$ Watts Free Air Watt Size Rating required for each resistor.

TEMPERATURE COEFFICIENT OF RESISTANCE

The resistance alloys used for all except the lowest ohmic values show such little change with temperature that in most power circuits the resistance is considered constant. Actually there may be changes at full load of -4% to $+8 \%$ of the initial resistance. The change is attributed in most part to the "temperature coefficient of resistance" (TCR) which is the change in resistance expressed as "parts per million per degree centigrade of temperature" ($\mathrm{pmm} /{ }^{\circ} \mathrm{C}$).

For special applications which require very constant resistance, it may be necessary to specify the maximum permissible TCR for the range of temperature involved. This would limit the choice of wire to only certain types of resistance alloys. The commonly known low TCR alloys in the 800 ohms per circular-mil-foot class consist largely of nickel and chromium alloyed with small amounts of aluminum and either copper or iron. Other low resistivity alloys, 294 ohms per circular-mil-foot, consist primarily of nickel and copper with only traces of other metals.

Fig. 15: Calculated change in resistance with nominal TC assumed constant.

Both of these wire classes are rated by the wire manufacturers as having a TCR of $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The expression " $0 \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ " implies that, although the nominal value of the TCR is zero, the actual value may lie anywhere within the tolerance range of $-20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to $+20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

For other resistance wires such as the widely used nickel-chromium-iron, for example, a nominal value of $+140 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is given. Actually, however, a tolerance of $\pm 30 \mathrm{ppm}$ is applicable so that the TCR may range between the limits of +110 to $+170 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Unfortunately, the TCR of a completed power resistor is generally somewhat different from that of the original wire. This is because the TCR may be affected by such factors as heat treatment during processing, and materials and methods of construction. Without special controls and precautions, the TCR over the range of $25^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ rise may increase to as much as
$0 \pm 80 \mathrm{ppm}$ from the original $0 \pm 20 \mathrm{ppm}$ for certain types of wire on vitreous enameled resistors. Theoretical changes in resistance with temperature are shown in Fig. 15.

The circuit designer should carefully consider the actual needs of the circuit before specifying limits on the TCR of a desired resistor. Wherever possible it is best to select a resistor for a critical application so that it operates at a low temperature rise. This will also provide the maximum stability over a long period. For low TCR (and other) applications, Ohmite can provide resistors with an "Ohmicone" (silicone-ceramic) coating. "Ohmicone" is processed at much lower temperatures than vitreous enamel and therefore makes control of TCR and tolerance easier. Data on the TCR and other properties of various alloys is given on page 98.

Our Tech Center is open 10am to 2pm CT Tuesdays and Thursdays, just call 866-9-0HMITE

Resistor Selection

RESISTANCE ALLOYS AND USES

A number of different resistance alloys are used in winding resistors and rheostats as shown in Fig. 16. The general use for each alloy is indicated by the column headed, "Resistance Range for Which Used." Whether a particular alloy can be used on a specific resistor can be estimated by dividing the given resistance by the area of the given winding space and determining whether the quotient falls within the limits given hereafter. The "high resistance" alloys cover the range from approximately 10 to 25,000 ohms per square inch of winding area, the "low to medium" type from 5 to 400 ohms and the "very low resistance" alloys from less than an ohm to 250 ohms. It should be noted that the "Ohms per Square Inch" ranges overlap considerably, indicating that in many instances a given resistor could use any of several alloys. Both the upper and lower limits of the ranges are only approximate and in general can be extended somewhat when necessary.

The actual temperature coefficient of a complete resistor is generally greater than the nominal for the wire alone. The approximate change in overall resistance at full load is shown in the table.

Other Alloys

In addition to the alloys tabulated which show small changes in resistance with temperature, there are others which sometimes have to be used for very low resistance units. These alloys have higher temperature coefficients, which limit their use to applications where the change in resistance with load is not important. An example is No. 60 alloy, which has a resistance of 60 ohms per circular-mil-foot and a temperature coefficient of $+700 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$.

Ballast Wire

There are other alloys which are selected especially for their high temperature coefficient of resistance. These are used for so-called "ballast" resistors where a large change in resistance is desired with a change in load. A typical ballast wire is Nickel, which has $58 \mathrm{ohms} / \mathrm{cmf}$ and a temperature coefficient of $+4800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Others are "Hytemco" and "Balco" at $120 \mathrm{ohms} /$ CMF and a TC of $+4500 \mathrm{pp} /{ }^{\circ} \mathrm{C}$.

	Alloy Composition (Approximate)	$\begin{gathered} \text { Ohms } \\ \text { per } \\ \text { CMF } \end{gathered}$	Trade Names	Mean Temp Coeff. of Res. ppm/ ${ }^{\circ} \mathrm{C}$	Temperature Range for TCR ${ }^{\circ} \mathrm{C}$	Resistance Range for Which Used	Average Resistance Change at Full Load**
1a	Nickel base, non-magnetic Ni 75\%, Cr 20\% plus $\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}$, etc.	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	Evanohm Karma Moleculoy Nikrothal L	0 ± 20	-65 to +250	Very high, Medi um and up, for low temp. coeff	$\begin{aligned} & \text { Under } \pm 1 \% \\ & \text { to } \pm 2 \% \end{aligned}$
1b				0 ± 10	-65 to +150		
2a	Iron base, magnetic Fe 73\%, Cr 22.5\%, Al 4.5\% (plus Co in one alloy)	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	Alloy 815-R Kanthall Dr Mesaloy	0 ± 20	-65 to + 200	Alternate sometimes for Class 1	$\begin{aligned} & \text { Under } \pm 1 \% \\ & \text { to } \pm 2 \% \end{aligned}$
2b				0 ± 10	0 to +150		
3а	Nickel-Chromium$80 \%-20 \%$	650675	Chromel A Nichrome V Nikrothal B Protoloy A Tophet C	$+80 \pm 20$	-65 to + 250	High and medium	+ 4 to +5\%
3b				$+60 \pm 20$			
4	Nickel-Chromium-Iron $60 \%-16 \%-24 \%$	675	Chromel C Electroloy Nichrome Nikrothal 6 Tophet C	$+140 \pm 30$	-65 to + 200	High and medium	+ 5 to + 8\%
5a	Copper-Nickel$55 \%-45 \%$	300	Advance Copel Cupron Cuprothal 294 Neutroloy	0 ± 20	-65 to + 150	Low and low to medium for low temp. coeff.	Under$\pm 1 \% \text { to } \pm 2 \%$
5b				0 ± 40			
6	Manganin $13 \% \mathrm{Mn}, 87 \% \mathrm{Cu}$	290	Manganin	0 ± 15	+ 15 to + 35	Low and low to medium for low TC near $25^{\circ} \mathrm{C}$	Under $\pm 1 \%$ to $\pm 2 \%^{* *}$
7	Copper-Nickel $77 \%-23 \%$	180	180 Alloy Cuprothal 180 Midohm	$+180 \pm 30$	-65 to +150	Very low	+ 5% to +8\%
9	Copper-Nickel $90 \%-10 \%$	90	90 Alloy 95 Alloy Cuprothal 90	$+450 \pm 50$	-65 to + 150	Very low	+ 5% to + 10\%

[^2]Fig. 16: Table of Resistance Alloys Generally Used for Resistors and Rheostats.

HOMEPAGE
All important website functions can be accessed easily from the homepage, as well as from the link-bar across the top of every page. Click the logo from any page to return to the homepage.

W ORLDWIDE INVENTORY SEARCH
Search results list specific CURRENT part-by-part availability, with links to distributors' websites.

Use at least three digits to limit your results to a reasonable list. Fewer digits will yield a broader variety; more digits a more limited variety of ohm values.

Helpful Photo Reference
As you hover over a product
name, a representative reference photo appears in the left column.
ONLINE CATALOG
An UP-TO-DATE categorized listing of ALL Ohmite products, including those released since the last catalog printing. Updates to existing products are also incorporated on a regular basis.

ENERGY RATING CALCULATOR
Specify desired ohm value and minimum joule rating. We will identify parts which meet or exceed the requirement

DISTRIBUTORS AND REPS

Updated contact information for all of our North American and worldwide distributors and representatives.

NEW PRODUCT ARCHIVES
All new products announced since the last print catalog.

The resistance values listed below and their decimal multiples have been designated as standard by the International Electrotechnical Commission (IEC). This listing ensures that every possible resistance value within its respective tolerance range is represented. The omission of a resistance value does not necessarily mean that Ohmite cannot manufacture the desired value.

Application Notes
 Preferred Standard Resistance Values

Please contact Ohmite at 866-964-6483 or sales@ohmite.com for resistance values not shown in this table.

1\% Tol. E96 Values (Plus 250』 and 500Ω)	5\% Tol. E24 Values (Plus 25 and 50Ω)	10% Tol. E12 Values (Plus 25 and 50Ω)	20% Tol. E6 Values (Plus 25 and 50Ω)	1\% Tol. E96 Values (Plus 250 and 500Ω)	5\% Tol. E24 Values (Plus 25 and 50』)	10% Tol. E12 Values (Plus 25 and 50Ω)	20\% Tol. E6 Values (Plus 25 and 50Ω)	1\% Tol. E96 Values (Plus 250 and 500Ω)	5\% Tol. E24 Values (Plus 25 and 50Ω)	10% Tol. E12 Values (Plus 25 Ω and 50Ω)	20% Tol. E6 Values (Plus 25Ω and 50Ω)
100	10	10	10	255				523			
102				261				536			
105				267				549			
107					27	27			56	56	
110	11			274				562			
113				280				576			
115				287				590			
118				294				604			
	12	12			30			619			
121				301					62		
124				309				634			
127				316				649			
130	13			324				665			
133					33	33	33		68	68	68
137				332				681			
140				340				698			
143				348				715			
147				357				732			
150	15	15	15		36			750	75		
154				365				768			
158				374				787			
	16			383				806			
162					39	39			82	82	
165				392				825			
169				402				845			
174				412				866			
178				422				887			
	18	18			43			909			
182				432					91		
187				442				931			
191				453				953			
196				464				976			
200	20				47	47	47				
205				475							
210				487							
215				499							
	22	22	22	500	50	50	50				
221					51						
226				511							
232											
237											
	24										
243											
249											
250	25	25	25								

Application Notes
 Ohm's Law

Ohm's Law defines the relationships between (P) power, (V) voltage, (I) current, and (R) resistance. One ohm is the resistance value through which one volt will maintain a current of one ampere.

I Current is what flows on a wire or conductor like water flowing down a river. Current flows from negative to positive on the surface of a conductor. Current is measured in (A) amperes or amps.
\mathbf{V} Voltage is the difference in electrical potential between two points in a circuit. It's the push or pressure behind current flow through a circuit, and is measured in (V) volts.

R Resistance determines how much current will flow through a component. Resistors are used to control voltage and current levels. A very high resistance allows a small amount of current to flow. A very low resistance allows a large amount of current to flow. Resistance is measured in ohms.

P Power is the amount of current times the voltage level at a given point measured in wattage or watts.

Adjustable Resistor: A resistor so constructed that its resistance can be readily changed.*
Alternating Current: A periodic current the average value of which over a period is zero. The equation for alternating current is the same as that for a periodic current except that $\mathrm{I}_{0}=\mathrm{O}^{*}$
Ambient Temperature: The temperature of the surrounding coiling medium, such as gas or liquid, which comes into contact with heated parts of the apparatus.*
Ampere: The unit of constant current which, maintained in two parallel rectilinear conductors of infinite length separated by a distance of one meter, produces between these conductors a force equal to $2 \times 10^{-7} \mathrm{mks}$ (meter-kilogram-second) units of force per meter of length.
Armature Resistor: A resistor connected in series with the armature of a motor either to limit the inrush current on starting, the gradual short circuiting of which brings the motor to normal speed, or to regulate the speed by armaturevoltage control.
Axiohm ${ }^{\dagger}$: Centohm ${ }^{\circledR}$ Coated axial terminal wirewound resistor.
Bracket Terminal Resistor: A resistor equipped with slotted metal end j brackets that serve as a means of mounting and connecting to the resistor.
Capacitance: That property of a system of conductors and dielectrics which permits the storage of electricity when potential differences exist between the conductors. Its value is expressed as the ratio of a quantity of electricity to a potential difference. A capacitance value is always positive.*
Capacitor: A device, the primary purpose of which is to introduce capacitance into an electric circuit. Capacitors are usually classified, according to their dielectrics, as air capacitors, mica capacitors, paper capacitors, etc.*
Clearance: The shortest distance through space between two live parts, between live parts and supports or other objects, or between any live part and grounded part.
Conduction: The transmission of heat or electricity through, or by means of, a conductor.
Conductor: A body so constructed from conducting material that it may be used as a carrier of electric current.*
Continuous Duty: A requirement of service that demands operation at a substantially constant load for un indefinitely long time.*
Continuous-Duty Resistor: A resistor that is capable of carrying continuously the current for which it is designed without exceeding the specified temperature rise.
Continuous Rating: Continuous rating is the rating that defines the load which can be carried for an indefinitely long time.*
Convection: Convection is the motion resulting in a fluid owing to differences of density and the action of gravity.
Corrib ${ }^{\circledR+}$: A tubular resistor consisting of an alloy resistance ribbon, crimped and edgewound on a ceramic core, the ribbon being securely and permanently fastened to the core by vitreous enamel or cement.
Creepage Distance: The shortest distance between conductors of opposite polarity or between a live part and ground as measured over the surface of the supporting material.

Current-limiting Resistor: A resistor inserted into an electric circuit to limit the flow of current to some predetermined value. Note: A currentlimiting resistor, usually in series with a fuse or circuit breaker, may be employed to limit the flow of circuit or system energy at the time of a fault or short-circuit.*
Dielectric Strength: The dielectric strength of an insulating material is the maximum potential gradient that the material can withstand without rupture.* It is usually specified in volts per unit thickness.
Dielectric Test: A test which consists of the application of a voltage higher than the rated voltage for a specified time for the purpose of determining the adequacy against breakdown of insulating materials and spacings under normal conditions.*
Direct Current: A unidirectional current in which the changes in value are either zero or so small that they may be neglected. A given current would be considered a direct current in some applications, but would not necessarily be so considered in other applications.*
Dividohm ${ }^{\text {®t }}$: A resistor with a bare side and clamp for adjustment.
Edgeohm ${ }^{\text {t : A }}$ high-current resistor made of an alloy resistance ribbon wound on edge forming an oval-shaped coil supported by grooved insulators which space adjacent turns and insulate them from the support bars. Support bars are secured to steel end pieces forming a sturdy resistor suitable for continuous-and-intermittentduty applications.
EIA: Electronic Industries Alliance.
Electromotive Force: The electromotive force is the agency causing the flow of current in a circuit. It is the electrical pressure (or drop) measured in volts.
Farad: The unit of capacitance of an electric condenser in which a charge of one coulomb produces a difference of potential of one volt between the poles of the capacitor.
Ferrule Resistor: A resistor supplied with ferrule terminals for mounting in standard fuse clips.
Field Discharge Switch: A switch usually of the knife blade type having auxiliary contacts for connecting the field of a generator or motor across a resistor (field discharge) at the instant preceding the opening of the switch.
Fixed Resistor: A resistor designed to introduce only one set amount of resistance into an electrical circuit.
Henry: The unit of inductance of a closed circuit in which an electromotive force of one volt is produced when the electric current traversing the circuit varies uniformly at the rate of one ampere per second.
Hot Spot: The point or location of maximum temperature on the external surface of a resistor.
Inductance: The (scalar) property of an electric circuit or of two neighboring circuits which determines the electromotive force induced in one of the circuits by a change of current in either of them.*
Impedance: The apparent resistance of an AC circuit, being the combination of both the resistance and reactance. It is equal to the ratio of the value of the EMF between the terminals to the current, there being no source of power
in the portion under consideration. The unit of impedance is the ohm and is represented by Z . Intermittent Duty: A requirement of service that demands operation for alternate intervals of (1) load and no-load; or (2) load and rest; or (3) load, no-load and rest; such alternate intervals being definitely specified.*
Intermittent-Duty Resistor: A resistor capable of carrying for a short period of time the high overload current for which it is designed without exceeding the specified temperature rise.
Machine-Duty Resistor: A resistor for use in the armature or rotor circuit of a motor in which the armature current is almost constant.
Mega Ohm: A unit of resistance equal to one million ohms.
MIL Resistor: A resistor built in accordance with Joint Army-Navy specifications.
Multi-Section Resistor: A resistor having two or more electrically independent sections.
NEC: The National Electrical Code is the standard of the National Board of Fire Underwriters for electric wiring and apparatus as recommended by the National Fire Protection Association and approved by the American Standards Association.
NEDA: National Electronic Distributors Association.
NEMA: The National Electrical Manufacturers Association, a non-profit trade association, supported by the manufacturers of electrical apparatus and supplies. NEMA is engaged in standardization to facilitate understanding between the manufacturers and users of electrical products.
Nominal Diameter: As applied to tubular resistors, this is the diameter of the ceramic tube expressed in inches and/or fractions thereof.
Nominal Length: As applied to tubular resistors, this is the length of the resistor base or core expressed in inches and/or fractions thereof.
Non-Inductive Resistor: A non-inductive power resistor is one in which the inductance and distributed capacitance are reduced to an absolute minimum.
Ohm: A unit of resistance defined as the resistance at $0^{\circ} \mathrm{C}$ of a column of mercury of uniform cross-section having a length of 106.3 centimeters and a mass of 14.4 grams.
Ohmmeter: An instrument for measuring electric resistance that is provided with a scale graduated in ohms.
Periodic Duty: A type of intermittent duty in which the load conditions are regularly recurrent. ${ }^{*}$
Periodic Rating: The rating which defines the load which can be carried for the alternate periods of load and rest specified in the rating, the apparatus starting cold and for the total time specified in the rating without causing any of the specified limitations to be exceeded.*
Power: The time rate of transferring or transforming energy; the rate of doing work or expending energy.
Power Resistor: A resistor capable of dissipating 5 watts or more.
Rating: A designated limit of operating characteristics of a machine, apparatus or device, based on definite conditions.

Note 1: Such operating characteristics as load, voltage, frequency, etc., may be given in the rating.
Note 2: The rating of control apparatus in general is expressed in volts, amperes, horsepower or kilowatts as may be appropriate, except that resistors are rated in ohms, amperes and class of service.*
Reactor: A device used for introducing reactance into a circuit for purposes such as motor starting, paralleling transformers and control of current.*
Rectifier: A device which converts alternating current to unidirectional current by virtue of a characteristic permitting appreciable flow of current in only one direction.*
Resistance: The (scalar) property of an electric circuit or of any body which may be used as part of an electric circuit which determines for a given current the rate at which electric energy is converted into heat or radiant energy and which has a value such that the product of the resistance and the square of the current gives the rate of conversion of energy. In the general case, resistance is a function of the current, but the term is most commonly used in connection with circuits where the resistance is independent of the current. ${ }^{*}$
Resistance Tolerance: The resistance tolerance of a power resistor is the extent to which its resistance may be permitted to deviate above or below the specified resistance. Resistance tolerance is usually expressed in percent.
Resistance Method of Temperature Determination: This method consists in the determination of temperature by comparison of the resistance of the winding at the temperature to be determined with the resistance at a known temperature.**

Resistive Conductor: A resistive conductor is a conductor used primarily because it possesses the property of high electric resistance.*
Resistivity: The resistivity of a material is the resistance of a sample of the material having specified dimensions.
Resistor: A device, the primary purpose of which is to introduce resistance into an electric circuit.*
Resistor Core: The resistor core or base of a power resistor is the insulating support on which the resistive conductor is wound.
Rheostat: An adjustable resistor so constructed that its resistance may be changed without opening the circuit in which it may be connected.*
Screw-Base Resistor: A power-type resistor equipped with Edison-type screw-base terminals for quick interchangeability.
Short-Time Rating: The rating that defines the load which can be carried for a short and definitely specified time, the machine, apparatus or device being at approximately room temperature at the time the load is applied.*
Silicone: A silicone coating meeting MIL-R-26 used on power type wirewound resistors.
Slim Mox A flat style resistor Ohmite manufactures. They are available in a variety of sizes and values.
Single-Wound Resistor: A resistor that has only one layer of resistance wire or ribbon wound around the insulating base or core.
Stackohm ${ }^{\circledR t}$: A resistor consisting of a hollow ceramic core, oval in shape, about which resistance wire is wound and completely embedded in an insulating and heat conducting coating.

[^0]: *Standard 5-section units are stocked; part numbers are listed on previous page.

[^1]: Check product availability at WWW.ohmite.com

[^2]: *American Society for Testing Materials. Tentative Specification B267-68.
 ${ }^{* *}$ For resistor with $300^{\circ} \mathrm{C}$ hot spot rise from $25^{\circ} \mathrm{C}$ ambient except $54^{\circ} \mathrm{C}$ rise for Manganin.

